Women's Intellectual Networking Research Symposium

女性知识网络研究研讨会

基本信息

  • 批准号:
    1727318
  • 负责人:
  • 金额:
    $ 0.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-02-15 至 2018-01-31
  • 项目状态:
    已结题

项目摘要

Women's Intellectual Network Research Symposium: A Meeting of Mathematical Minds is a one-day symposium that will be held at Brown University on Saturday, March 4th, 2017. The goal of this symposium is to bring together undergraduate and graduate students, as well as post-doctoral fellows and faculty from New England, in order to engage in research discussions and exchange ideas. This symposium particularly seeks to connect women and other underrepresented minorities in similar fields of mathematics or statistics from universities in the New England area, as well as to promote collaboration and share strategies for addressing issues facing these groups. However, the symposium is more broadly inclusive, and hopes to benefit a larger community. The symposium is open to everyone, regardless of gender identity. The symposium will feature two plenary talks, in applied dynamical systems and geometric group theory, three tutorials, including one on public key cryptography, and one in data science, short talks by students (graduate and undergraduate), post-doctoral fellows and faculty, a poster session, and a panel on effective mentoring. A meeting of members of AWM (Association for Women in Mathematics) Student Chapters will also be convened during the symposium. The symposium seeks to have a broad representation from pure, applied and industrial math, and encourages participation from researchers in all areas of mathematics, applied mathematics and statistics.This pan-New England symposium will serve to build bridges between universities and connect researchers, particularly upcoming and younger researchers, women and underrepresented minorities, in similar mathematical fields. The geographic proximity of these universities makes it more likely that networks formed at the conference can be sustained and strengthened, which in turn should increase the probability that these researchers stay in the field and become highly productive members of the community. The symposium lays a strong emphasis on vertical integration, namely having representation at all levels, from undergraduate students to faculty, as we believe this is particularly beneficial to achieve the objectives of the symposium.The symposium website is: http://www.dam.brown.edu/people/aah/WINRS/index.html
妇女的智力网络研究研讨会:数学头脑的会议是一个为期一天的研讨会,将于星期六在布朗大学举行,2017年3月4日。本次研讨会的目标是汇集本科生和研究生,以及博士后研究员和教师从新英格兰,以从事研究讨论和交流思想。本次研讨会特别寻求连接妇女和其他代表性不足的少数民族在类似领域的数学或统计数据的大学在新英格兰地区,以及促进合作和分享战略,以解决这些群体面临的问题。然而,研讨会更具包容性,并希望使更大的社区受益。研讨会对所有人开放,不分性别。研讨会将包括两个全体会议,在应用动力系统和几何群论,三个教程,包括一个关于公钥密码学,一个在数据科学,由学生(研究生和本科生),博士后研究员和教师,海报会议的简短会谈,并在有效的指导小组。研讨会期间还将召开AWM(妇女数学协会)学生分会成员会议。本次研讨会旨在吸引来自纯数学、应用数学和工业数学的广泛代表,并鼓励数学、应用数学和统计学各个领域的研究人员参与。本次泛新英格兰研讨会将在大学之间建立桥梁,并将研究人员,特别是即将到来的年轻研究人员,女性和代表性不足的少数民族,在类似的数学领域联系起来。这些大学在地理上的接近使得在会议上形成的网络更有可能得到维持和加强,这反过来又会增加这些研究人员留在该领域并成为社区高产成员的可能性。研讨会强调纵向一体化,即从本科生到教师的各级代表,因为我们相信这对实现研讨会的目标特别有利。研讨会网站是:http://www.dam.brown.edu/people/aah/WINRS/index.html

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kavita Ramanan其他文献

Quenched large deviation principles for random projections of math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msubsupmrowmiℓ/mi/mrowmrowmip/mi/mrowmrowmin/mi/mrow/msubsup/math balls
数学随机投影的淬火大偏差原理 xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" 类="数学" msubsup mrow mi ℓ/mi/mrow mrow mip/mi/mrow mrow min/mi/mrow/msubsup 数学球
  • DOI:
    10.1016/j.jfa.2025.110937
  • 发表时间:
    2025-09-15
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Patrick Lopatto;Kavita Ramanan;Xiaoyu Xie
  • 通讯作者:
    Xiaoyu Xie
The $\ell_r$-Levy-Grothendieck problem and $r\rightarrow p$ norms of Levy matrices
$ell_r$-Levy-Grothendieck 问题和 Levy 矩阵的 $r ightarrow p$ 范数
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kavita Ramanan;Xiaoyu Xie
  • 通讯作者:
    Xiaoyu Xie
The fundamental martingale with applications to Markov Random Fields
基本鞅及其在马尔可夫随机场中的应用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Hu;Kavita Ramanan;William Salkeld
  • 通讯作者:
    William Salkeld
On the large deviation rate function for marked sparse random graphs
关于有标记稀疏随机图的大偏差率函数
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kavita Ramanan;S. Yasodharan
  • 通讯作者:
    S. Yasodharan
A Mimicking Theorem for processes driven by fractional Brownian motion
分数布朗运动驱动过程的拟态定理
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Hu;Kavita Ramanan;William Salkeld
  • 通讯作者:
    William Salkeld

Kavita Ramanan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kavita Ramanan', 18)}}的其他基金

Rare Events and High-Dimensional Stochastic Systems
稀有事件和高维随机系统
  • 批准号:
    2246838
  • 财政年份:
    2023
  • 资助金额:
    $ 0.43万
  • 项目类别:
    Standard Grant
Interacting Particle Systems and Mean-field games Workshops
交互粒子系统和平均场游戏研讨会
  • 批准号:
    2207572
  • 财政年份:
    2022
  • 资助金额:
    $ 0.43万
  • 项目类别:
    Standard Grant
Analysis of High-Dimensional Stochastic Systems
高维随机系统分析
  • 批准号:
    1954351
  • 财政年份:
    2020
  • 资助金额:
    $ 0.43万
  • 项目类别:
    Continuing Grant
2018 Stochastic Networks Conference and Summer School in Applied Probability
2018年随机网络会议暨应用概率暑期学校
  • 批准号:
    1822084
  • 财政年份:
    2018
  • 资助金额:
    $ 0.43万
  • 项目类别:
    Standard Grant
"High-dimensional random phenomena and rare events"
《高维随机现象和罕见事件》
  • 批准号:
    1713032
  • 财政年份:
    2017
  • 资助金额:
    $ 0.43万
  • 项目类别:
    Continuing Grant
Rigorous Approximations of Stochastic Network Dynamics, with Applications to Real-World Networks
随机网络动力学的严格近似及其在现实世界网络中的应用
  • 批准号:
    1538706
  • 财政年份:
    2015
  • 资助金额:
    $ 0.43万
  • 项目类别:
    Standard Grant
Problems at the Interface of Stochastics and Analysis
随机学与分析的交叉问题
  • 批准号:
    1407504
  • 财政年份:
    2014
  • 资助金额:
    $ 0.43万
  • 项目类别:
    Continuing Grant
Stability, Sensitivity and Optimization of Stochastic Systems
随机系统的稳定性、敏感性和优化
  • 批准号:
    1234100
  • 财政年份:
    2012
  • 资助金额:
    $ 0.43万
  • 项目类别:
    Standard Grant
Travel Grant for the Applied Probability Society Conference
应用概率学会会议旅费补助金
  • 批准号:
    1114608
  • 财政年份:
    2011
  • 资助金额:
    $ 0.43万
  • 项目类别:
    Standard Grant
Analysis of Large-Scale Stochastic Systems
大规模随机系统分析
  • 批准号:
    1052750
  • 财政年份:
    2010
  • 资助金额:
    $ 0.43万
  • 项目类别:
    Standard Grant

相似海外基金

Genomic analysis of neurodevelopmental disorders, particularly autism spectrum disorders and intellectual disabilities
神经发育障碍,特别是自闭症谱系障碍和智力障碍的基因组分析
  • 批准号:
    23KJ1112
  • 财政年份:
    2023
  • 资助金额:
    $ 0.43万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Comprehensive development strategy of modality-specific "intellectual property" and "cultivation" with an eye on "pharmaceutical affairs" in academia drug discovery
学术界新药研发着眼“药事”的模式“知识产权”与“培育”综合发展策略
  • 批准号:
    23K02551
  • 财政年份:
    2023
  • 资助金额:
    $ 0.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of rights handbook and rights education program through co-production with people with intellectual disabilities.
通过与智障人士共同制作,制定权利手册和权利教育计划。
  • 批准号:
    23K01910
  • 财政年份:
    2023
  • 资助金额:
    $ 0.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding the effects of a family preservation program for parents with intellectual disability
了解家庭保护计划对智力障碍父母的影响
  • 批准号:
    10573666
  • 财政年份:
    2023
  • 资助金额:
    $ 0.43万
  • 项目类别:
A Stage 1 Pilot Test for Feasibility and Efficacy of a Multi-Level Intervention To Increase Physical Activity in Adults with Intellectual Disability: Step it Up +
第一阶段试点测试多层次干预措施的可行性和有效性,以增加智力障碍成人的体力活动:加快步伐
  • 批准号:
    10585633
  • 财政年份:
    2023
  • 资助金额:
    $ 0.43万
  • 项目类别:
Cerebral activation differences between slow wave-coupled and uncoupled spindles correlate with intellectual abilitiesg and Human intelligence
慢波耦合和非耦合纺锤体之间的大脑激活差异与智力和人类智力相关
  • 批准号:
    480773
  • 财政年份:
    2023
  • 资助金额:
    $ 0.43万
  • 项目类别:
A Study about Intellectual, Social, and Emotional Learning in Living Environment Studies
生活环境研究中智力、社会和情感学习的研究
  • 批准号:
    23K02456
  • 财政年份:
    2023
  • 资助金额:
    $ 0.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Creation of a Self-Regulation Model for Sexual Problem Behavior for Children and adlescents with Intellectual and Developmental Disabilities
为智力和发育障碍儿童和青少年建立性问题行为自我调节模型
  • 批准号:
    23K01888
  • 财政年份:
    2023
  • 资助金额:
    $ 0.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
How Does Life-long Education Promote Relational Autonomy of People with Intellectual Disabilities?
终身教育如何促进智障人士的关系自主?
  • 批准号:
    23KJ1932
  • 财政年份:
    2023
  • 资助金额:
    $ 0.43万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Improving pregnancy outcomes for women with intellectual and developmental disabilities in Medicaid
通过医疗补助改善智力和发育障碍女性的妊娠结局
  • 批准号:
    10657110
  • 财政年份:
    2023
  • 资助金额:
    $ 0.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了