Rigorous Approximations of Stochastic Network Dynamics, with Applications to Real-World Networks

随机网络动力学的严格近似及其在现实世界网络中的应用

基本信息

  • 批准号:
    1538706
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Stochastic networks are comprised of "jobs" in the form of packets or customers that arrive to a network and wait in buffers at different nodes of the networks until their processing requirements are fulfilled. Stochastic variability arises from randomness in arrival and processing times, as well as from routing and scheduling decisions. Such networks are ubiquitous and arise as models in diverse fields ranging from telecommunications and service systems to biological systems. A better understanding of these networks has the potential to lead to new algorithms that dramatically improve performance and enable the support of novel network applications. This award supports the development of a general mathematical framework for the analysis of two broad classes of stochastic networks: large-scale load-balancing networks that arise, for example, in web-server farms, and queueing networks that use scheduling policies involving prioritization, which are relevant for real-time scheduling in computer networks and health care systems. The goal is to identify tractable approximations of both transient dynamics and equilibrium behavior, rigorously establish their accuracy for suitable values of network parameters, and to use them to gain insight into network design. There will be mentorship of graduate students, a multidisciplinary project for an undergraduate student and opportunity for outreach. The project also involves interactions with industry, which increases the potential of impacting the design of real networks.Stochastic networks are typically too complex to admit an exact analysis. The goal then is to obtain tractable approximations, whose accuracy can be rigorously justified in a suitable (asymptotic) regime of network parameters via limit theorems for suitably scaled state processes. While there is a well developed mathematical theory of "scaling limits" for certain classes of networks, it does not cover the networks considered in this project, which involve many servers at a single node, general service distributions and non-head of the line scheduling policies. One of the challenges is that Markovian scaling limits of these networks are typically not finite-dimensional. The research will develop tractable infinite-dimensional Markovian representations of these systems, involving interacting measure-valued processes and infinite-dimensional Skorokhod maps, and rigorously establish scaling limit theorems. The analysis will combine methods from different fields, including probability, stochastic analysis, dynamical systems, partial differential equations and optimization. The tools developed will potentially be applicable more broadly for the study of analogous stochastic models arising in other applications. Simulations will also be carried out to ascertain the validity of these approximations for finite systems.
随机网络由以数据包或客户的形式到达网络并在网络的不同节点的缓冲区中等待直到满足其处理要求的“作业”组成。随机可变性源于到达和处理时间的随机性,以及路由和调度决策。 这样的网络是无处不在的,并出现在从电信和服务系统到生物系统的不同领域的模型。 更好地了解这些网络有可能导致新的算法,显着提高性能,使新的网络应用程序的支持。 该奖项支持开发一个通用数学框架,用于分析两大类随机网络:例如,在Web服务器农场中出现的大规模负载平衡网络,以及使用涉及优先级的调度策略的分布式网络,这些策略与计算机网络和医疗保健系统中的实时调度相关。 我们的目标是确定易于处理的近似的瞬态动力学和平衡行为,严格建立其准确性的网络参数的合适值,并使用它们来深入了解网络设计。将有研究生的导师,一个本科生的多学科项目和推广的机会。 该项目还涉及与工业界的互动,这增加了影响真实的网络设计的可能性。随机网络通常过于复杂,无法进行精确的分析。然后,目标是获得易于处理的近似,其准确性可以严格证明在一个合适的(渐近)制度的网络参数通过极限定理适当缩放的状态过程。 虽然有一个发达的数学理论的“缩放限制”的某些类别的网络,它不包括在这个项目中考虑的网络,其中涉及许多服务器在一个单一的节点,一般的服务分布和非头的线调度策略。 挑战之一是这些网络的马尔可夫尺度限制通常不是有限维的。该研究将开发这些系统的易处理的无限维马尔可夫表示,涉及相互作用的测度值过程和无限维Skorokhod映射,并严格建立标度极限定理。 分析将结合来自不同领域的联合收割机方法,包括概率、随机分析、动力系统、偏微分方程和优化。 开发的工具将可能更广泛地适用于研究在其他应用中产生的类似随机模型。 模拟也将进行,以确定这些近似的有效性有限系统。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rare Nash Equilibria and the Price of Anarchy in Large Static Games
  • DOI:
    10.1287/moor.2018.0929
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Lacker;K. Ramanan
  • 通讯作者:
    D. Lacker;K. Ramanan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kavita Ramanan其他文献

Quenched large deviation principles for random projections of math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msubsupmrowmiℓ/mi/mrowmrowmip/mi/mrowmrowmin/mi/mrow/msubsup/math balls
数学随机投影的淬火大偏差原理 xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" 类="数学" msubsup mrow mi ℓ/mi/mrow mrow mip/mi/mrow mrow min/mi/mrow/msubsup 数学球
  • DOI:
    10.1016/j.jfa.2025.110937
  • 发表时间:
    2025-09-15
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Patrick Lopatto;Kavita Ramanan;Xiaoyu Xie
  • 通讯作者:
    Xiaoyu Xie
The $\ell_r$-Levy-Grothendieck problem and $r\rightarrow p$ norms of Levy matrices
$ell_r$-Levy-Grothendieck 问题和 Levy 矩阵的 $r ightarrow p$ 范数
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kavita Ramanan;Xiaoyu Xie
  • 通讯作者:
    Xiaoyu Xie
The fundamental martingale with applications to Markov Random Fields
基本鞅及其在马尔可夫随机场中的应用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Hu;Kavita Ramanan;William Salkeld
  • 通讯作者:
    William Salkeld
On the large deviation rate function for marked sparse random graphs
关于有标记稀疏随机图的大偏差率函数
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kavita Ramanan;S. Yasodharan
  • 通讯作者:
    S. Yasodharan
A Mimicking Theorem for processes driven by fractional Brownian motion
分数布朗运动驱动过程的拟态定理
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Hu;Kavita Ramanan;William Salkeld
  • 通讯作者:
    William Salkeld

Kavita Ramanan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kavita Ramanan', 18)}}的其他基金

Rare Events and High-Dimensional Stochastic Systems
稀有事件和高维随机系统
  • 批准号:
    2246838
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Interacting Particle Systems and Mean-field games Workshops
交互粒子系统和平均场游戏研讨会
  • 批准号:
    2207572
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Analysis of High-Dimensional Stochastic Systems
高维随机系统分析
  • 批准号:
    1954351
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
2018 Stochastic Networks Conference and Summer School in Applied Probability
2018年随机网络会议暨应用概率暑期学校
  • 批准号:
    1822084
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
"High-dimensional random phenomena and rare events"
《高维随机现象和罕见事件》
  • 批准号:
    1713032
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Women's Intellectual Networking Research Symposium
女性知识网络研究研讨会
  • 批准号:
    1727318
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Problems at the Interface of Stochastics and Analysis
随机学与分析的交叉问题
  • 批准号:
    1407504
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Stability, Sensitivity and Optimization of Stochastic Systems
随机系统的稳定性、敏感性和优化
  • 批准号:
    1234100
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Travel Grant for the Applied Probability Society Conference
应用概率学会会议旅费补助金
  • 批准号:
    1114608
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Analysis of Large-Scale Stochastic Systems
大规模随机系统分析
  • 批准号:
    1052750
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Stochastic Approximations for the Solution and Uncertainty Analysis of Data-Intensive Inverse Problems
合作研究:数据密集型反问题的求解和不确定性分析的随机近似
  • 批准号:
    1723005
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Stochastic Approximations for the Solution and Uncertainty Analysis of Data-Intensive Inverse Problems
合作研究:数据密集型反问题的求解和不确定性分析的随机近似
  • 批准号:
    1723011
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
On numerical approximations of high-dimensional nonlinear parabolic partial differential equations and of backward stochastic differential equations
高维非线性抛物型偏微分方程和倒向随机微分方程的数值逼近
  • 批准号:
    381158774
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grants
Contemporary Problems in Probability and Statistics:Gaussian Approximations and Small Deviations for Stochastic Processes
当代概率与统计问题:随机过程的高斯近似和小偏差
  • 批准号:
    323605340
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grants
Collaborative Research: Stochastic Approximations for the Solution and Uncertainty Analysis of Data-Intensive Inverse Problems
合作研究:数据密集型反问题的求解和不确定性分析的随机近似
  • 批准号:
    1723048
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Algorithms and Numerical Analysis for Nested Approximations of Stochastic Particle Dynamics
随机粒子动力学嵌套近似的算法和数值分析
  • 批准号:
    1104333
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
finte element approximations of stochastic flow equations involving wick products
涉及吸芯积的随机流动方程的有限元近似
  • 批准号:
    46545-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Numerical Analysis for Nested Approximations of Stochastic Particle Dynamics
随机粒子动力学嵌套近似的算法和数值分析
  • 批准号:
    0813893
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
finte element approximations of stochastic flow equations involving wick products
涉及吸芯积的随机流动方程的有限元近似
  • 批准号:
    46545-2005
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
finte element approximations of stochastic flow equations involving wick products
涉及吸芯积的随机流动方程的有限元近似
  • 批准号:
    46545-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了