DMREF: Engineering Organic Glasses

DMREF:工程有机玻璃

基本信息

  • 批准号:
    1234320
  • 负责人:
  • 金额:
    $ 110万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY: With support from the NSF DMR under the Materials Genome Initiative, Lian Yu, Mark Ediger, Juan de Pablo, and their coworkers will study Engineering Organic Glasses. Glasses constitute an important class of materials that combine the advantages of solids, including mechanical stability, with the advantages of liquids, including macroscopic spatial uniformity, making them ideal for a wide range of applications. Glasses, however, are inherently non-equilibrium materials, which makes their study and design particularly challenging. While familiar glasses are inorganic and polymeric, organic glasses of relatively low molecular weights are finding applications in electronics, bio-preservation, and drug delivery. The team seeks to create a knowledge base and develop design principles for the engineering of organic glasses. The effort builds on previous progress in the engineering of crystals and inorganic glasses, as well as recent discoveries in the field of organic glasses, in particular, the creation of high-density and high-stability glasses with tunable anisotropy by physical vapor deposition (PVD). A concerted program of experiments and simulations will target three areas of organic glass engineering that have technological relevance and where current understanding is lacking: (1) controlling anisotropy, (2) controlling molecular conformation, and (3) inhibiting crystallization. Under Aim 1, the team will study the creation and control of anisotropy in organic glasses by PVD, external fields, and liquid-crystal order. Though often isotropic, glasses with controlled anisotropy have potential applications in data storage, non-linear optics, and laser technologies. Work under Aim 2 seeks to produce organic glasses while actively controlling molecular conformation. Conformational flexibility characterizes many molecular components of organic glasses; controlling conformation offers a unique opportunity in optimizing their properties (e.g., HOMO/LUMO levels and charge mobility). Under Aim 3, the team will stabilize organic glasses against crystallization using polymer additives. This capability will enable promising but easy-to-crystallize organic glasses to serve as durable amorphous materials. Work in all areas will be performed in a high-throughput manner, with simulations used to screen the selection of materials and conditions for experimentation, and to interpret experimental data. NON-TECHNICAL SUMMARY:Glasses are amorphous materials that combine solid-like mechanical stability and liquid-like spatial uniformity, making them ideal for many applications ranging from telecommunication to bio-preservation. This research seeks to advance the science and technology of organic glasses, and the results will provide a foundation for designing organic glasses with desired properties through concerted use of simulations and targeted experiments. This research will benefit materials scientists and engineers in other fields where glasses and amorphous materials are important, and contribute to a broader perspective on the science of glasses in general. The improved ability to stabilize amorphous materials against crystallization will especially benefit pharmaceutical scientists as they develop amorphous formulations to deliver highly potent but poorly soluble drugs. Poor solubility is limiting the development of many drugs that would significantly advance health care in the U.S. and developing countries. In addition to journal publications, results from this work will be disseminated via a central website, a mechanism especially important for archiving and sharing the extensive data from high-throughput investigations.Graduate and undergraduate students will benefit from the multi-disciplinary nature of this project, having significant exposure to simulations and experiments, crystals and glasses, and polymeric and low-molecular-weight materials. Personnel supported by this grant will work with UW-Madison's Pre-college Enrichment Opportunity Program for Learning Excellence (PEOPLE), which has a proven record of increasing the enrollment of minority and low-income high school students in colleges and universities. This program provides experiences that help students to become scientifically literate citizens and encourages them to consider careers in science and engineering.
技术摘要:在 NSF DMR 材料基因组计划的支持下,Lian Yu、Mark Ediger、Juan de Pablo 及其同事将研究工程有机玻璃。 玻璃是一类重要的材料,它结合了固体的优点(包括机械稳定性)和液体的优点(包括宏观空间均匀性),使其成为广泛应用的理想选择。然而,玻璃本质上是非平衡材料,这使得它们的研究和设计特别具有挑战性。虽然常见的玻璃是无机和聚合物玻璃,但分子量相对较低的有机玻璃正在电子、生物防腐和药物输送领域得到应用。该团队致力于创建一个知识库并开发有机玻璃工程的设计原则。这项工作建立在晶体和无机玻璃工程的先前进展以及有机玻璃领域的最新发现的基础上,特别是通过物理气相沉积(PVD)制造具有可调节各向异性的高密度和高稳定性玻璃。协调一致的实验和模拟计划将针对有机玻璃工程的三个具有技术相关性且目前缺乏理解的领域:(1)控制各向异性,(2)控制分子构象,以及(3)抑制结晶。在目标 1 下,该团队将研究通过 PVD、外部场和液晶有序在有机玻璃中产生和控制各向异性。尽管通常是各向同性的,但具有受控各向异性的玻璃在数据存储、非线性光学和激光技术方面具有潜在的应用。目标 2 的工作旨在生产有机玻璃,同时积极控制分子构象。构象灵活性是有机玻璃许多分子成分的特征;控制构象为优化其特性(例如 HOMO/LUMO 能级和电荷迁移率)提供了独特的机会。根据目标 3,该团队将使用聚合物添加剂稳定有机玻璃,防止结晶。这种能力将使有前途但易于结晶的有机玻璃成为耐用的非晶材料。所有领域的工作都将以高通量的方式进行,通过模拟来筛选实验材料和条件的选择,并解释实验数据。非技术摘要:玻璃是非晶态材料,结合了固体般的机械稳定性和液体般的空间均匀性,使其成为从电信到生物保存等许多应用的理想选择。这项研究旨在推进有机玻璃的科学和技术,其结果将为通过模拟和有针对性的实验设计具有所需性能的有机玻璃奠定基础。这项研究将使玻璃和非晶材料发挥重要作用的其他领域的材料科学家和工程师受益,并有助于为玻璃科学提供更广阔的视野。稳定无定形材料防止结晶的能力的提高将特别有利于制药科学家,因为他们开发无定形制剂来提供高效但难溶性的药物。溶解度差限制了许多能够显着促进美国和发展中国家医疗保健的药物的开发。除了期刊出版物外,这项工作的结果还将通过一个中央网站传播,这是一种对于存档和共享高通量研究的大量数据特别重要的机制。研究生和本科生将受益于该项目的多学科性质,大量接触模拟和实验、晶体和玻璃以及聚合物和低分子量材料。 受这笔赠款支持的人员将与威斯康星大学麦迪逊分校的大学预科卓越学习机会计划 (PEOPLE) 合作,该计划在增加少数民族和低收入高中生在学院和大学的入学率方面有着良好的记录。该计划提供帮助学生成为具有科学素养的公民的经验,并鼓励他们考虑从事科学和工程职业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lian Yu其他文献

Polymorphism of griseofulvin: concomitant crystallization from the melt and a single crystal structure of a metastable polymorph with anomalously large thermal expansion
灰黄霉素的多晶型现象:熔体伴随结晶和具有异常大热膨胀的亚稳态多晶型物的单晶结构
  • DOI:
    10.1039/c7cc07744k
  • 发表时间:
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Yuan Su;Jia Xu;Qin Shi;Lian Yu;Ting Cai
  • 通讯作者:
    Ting Cai
Jahn-Teller induced corrections to rotational and fine-structure parameters in doubly degenerate electronic states
Jahn-Teller 对双简并电子态中的旋转和精细结构参数进行了诱导修正
  • DOI:
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xianming Liu;Lian Yu;T. Miller
  • 通讯作者:
    T. Miller
Impairment of Vα24-Jα18+Vβ11+ natural killer T cells in adult acute lymphoblastic leukemia patients
成人急性淋巴细胞白血病患者 Vα24-Jα18 Vβ11 自然杀伤 T 细胞受损
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Haijun Zhao;Zhifeng Li;Shiting Xie;Yiming Luo;Yong Zhou;Manman Deng;Hanyan Zeng;Jintao Zhao;Lian Yu;Bing Xu
  • 通讯作者:
    Bing Xu
Fast Crystal Growth Induces Mobility and Tension in Supercooled o-Terphenyl.
快速晶体生长会导致过冷邻三联苯的流动性和张力。
High resolution laser spectroscopy of asymmetrically deuterated cyclopentadienyl radicals: A study of vibronic degeneracy resolution and Jahn–Teller distortion
不对称氘代环戊二烯基自由基的高分辨率激光光谱:振动简并分辨率和 Jahn-Teller 畸变的研究
  • DOI:
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lian Yu;D. Cullin;J. Williamson;T. Miller
  • 通讯作者:
    T. Miller

Lian Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lian Yu', 18)}}的其他基金

Glasses with Tunable Liquid Crystalline Order
具有可调液晶顺序的眼镜
  • 批准号:
    1904601
  • 财政年份:
    2019
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
Surface Crystallization and Diffusion of Organic Glasses
有机玻璃的表面结晶和扩散
  • 批准号:
    1206724
  • 财政年份:
    2012
  • 资助金额:
    $ 110万
  • 项目类别:
    Continuing Grant
GOALI: Crystallization of Organic Glasses
目标:有机玻璃的结晶
  • 批准号:
    0907031
  • 财政年份:
    2009
  • 资助金额:
    $ 110万
  • 项目类别:
    Continuing Grant
Polymorphism of Organic Materials
有机材料的多晶型
  • 批准号:
    0804786
  • 财政年份:
    2008
  • 资助金额:
    $ 110万
  • 项目类别:
    Continuing Grant

相似国自然基金

Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Atomic-Scale Engineering of Bioactive Organic Molecules on Surfaces
表面生物活性有机分子的原子尺度工程
  • 批准号:
    DP240100464
  • 财政年份:
    2024
  • 资助金额:
    $ 110万
  • 项目类别:
    Discovery Projects
Metal-Organic Framework-Based Gas Sensors: Structural Engineering for Early Diabetes Diagnosis and Monitoring (SEEDDM)
基于金属有机框架的气体传感器:早期糖尿病诊断和监测的结构工程 (SEEDDM)
  • 批准号:
    EP/Y002318/1
  • 财政年份:
    2024
  • 资助金额:
    $ 110万
  • 项目类别:
    Research Grant
CAREER: Organic Structure and Interphase Engineering for Fast-Charging, High-Temperature and Sustainable Batteries
职业:快速充电、高温和可持续电池的有机结构和相间工程
  • 批准号:
    2419947
  • 财政年份:
    2024
  • 资助金额:
    $ 110万
  • 项目类别:
    Continuing Grant
Leveraging the unique metabolism of Megasphaera elsdenii for metabolic engineering to medium and long chain organic acids for use in jet fuels and biomaterials
利用埃氏巨型球菌的独特代谢进行代谢工程,生产用于喷气燃料和生物材料的中链和长链有机酸
  • 批准号:
    2335944
  • 财政年份:
    2023
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
Interfacial engineering of multilayered metal organic framework membranes
多层金属有机骨架膜的界面工程
  • 批准号:
    DP230103192
  • 财政年份:
    2023
  • 资助金额:
    $ 110万
  • 项目类别:
    Discovery Projects
Molecular Engineering of Semiconducting Polymers for Emerging Organic Electronics
用于新兴有机电子的半导体聚合物的分子工程
  • 批准号:
    RGPIN-2022-04428
  • 财政年份:
    2022
  • 资助金额:
    $ 110万
  • 项目类别:
    Discovery Grants Program - Individual
Improving organic electronic devices through multifunctional additives and device engineering
通过多功能添加剂和器件工程改进有机电子器件
  • 批准号:
    547704-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 110万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Efficient carrier transport in organic semiconductors through molecular orbital overlap engineering
通过分子轨道重叠工程实现有机​​半导体中的高效载流子传输
  • 批准号:
    22H01933
  • 财政年份:
    2022
  • 资助金额:
    $ 110万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Engineering of strong light-matter coupling in organic semiconductors: a novel way to control materials' properties
有机半导体中强光-物质耦合工程:控制材料性能的新方法
  • 批准号:
    569543-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 110万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Engineering cyanine aggregation and self-assembly to access exceptionally red-shifted organic chromophores
设计花青聚集和自组装以获得异常红移的有机发色团
  • 批准号:
    2204263
  • 财政年份:
    2022
  • 资助金额:
    $ 110万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了