DMREF: Collaborative Research: First-Principles Based Design of Spintronic Materials and Devices
DMREF:协作研究:基于第一原理的自旋电子材料和器件设计
基本信息
- 批准号:1235230
- 负责人:
- 金额:$ 26.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
****Technical Abstract****First-principles theory (DFT and beyond) will be used to screen thousands of half-metals and choose a set of experimentally-accessible starting materials. We will also develop models based on state-of-the-art Non-Equilibrium Green Functions to calculate their transport characteristics. Experimentally, we will synthesize the candidate materials, test their electrical, magnetic, and structural characteristics and compare to theoretical predictions. The results of this characterization will then be fed back to refine our theoretical methods. Promising materials will be tested with more advanced techniques (such as spin-polarized tunneling and local-electrode atom probe tomography), providing more detailed information for more advanced modeling. The most promising materials will be used in prototype TMR and (CIP/CPP)-GMR devices. A specific disruptive technology goal is the design, fabrication and demonstration of a low moment half-metal with perpendicular anisotropy and low magnetic damping ideally suited for STT-RAM. This will be accomplished through the tight circular work flow among rational design, computational verification, spin transport modeling, experimental characterization and device fabrication. Several interdisciplinary courses at UA and UVa will be developed to quickly incorporate lessons we have learned into the classroom and provide students with cutting-edge training. Software developed in the project will be deployed on the NSF NanoHUB.****Non-Technical Abstract****In today's electronic devices electrons are manipulated through their electrical charge. However, electrons have another property called "spin". Electrons behave as if they were spinning about an axis. According to quantum mechanics the spin axis of an electron can point in only one of two directions, i.e. either "up" or "down". In most materials there are equal numbers of up and down electrons and usually both types respond to an electric field in the same way. In magnetic materials, however, the number of up and down spin electrons may be different and the two types of electrons may respond to electric fields in different ways. The most extreme example of this phenomenon is a "half-metal" - meaning that one set of electrons is a metal and the other set is an insulator. A specific technology goal is the design, fabrication and demonstration of a half-metal with carefully controlled magnetic properties tailored to meet the requirements of non-volatile magnetic memories (which aim to replace traditional RAM). We aim to provide an improved understanding of half-metals and magnetic materials in general, in particular how one can relate 'first-principles' calculations to experimentally accessible and technologically relevant materials and device parameters. This project will help to increase the STEM workforce by providing research experiences for undergraduates and high school students and will enhance its diversity through its composition and collaboration with HBCU faculty. Several interdisciplinary courses at UA and UVa will be developed to quickly incorporate lessons learned into the classroom and provide students with cutting-edge training.
* 技术摘要 * 第一性原理理论(DFT及更高)将用于筛选数千种半金属,并选择一组实验可用的起始材料。我们还将开发基于最先进的非平衡绿色函数的模型,以计算其传输特性。在实验上,我们将合成候选材料,测试它们的电,磁和结构特性,并与理论预测进行比较。 然后将反馈这种表征的结果以改进我们的理论方法。 有前途的材料将用更先进的技术(如自旋极化隧穿和局部电极原子探针断层扫描)进行测试,为更先进的建模提供更详细的信息。最有前途的材料将用于原型TMR和(CIP/CPP)-GMR器件。 一个具体的突破性技术目标是设计、制造和演示一种具有垂直各向异性和低磁阻尼的低磁矩半金属,非常适合STT-RAM。这将通过合理设计、计算验证、自旋输运建模、实验表征和器件制造之间的紧密循环工作流程来完成。UA和UVa的几个跨学科课程将被开发,以快速将我们学到的经验教训融入课堂,并为学生提供尖端的培训。该项目开发的软件将部署在NSF NanoHUB上。*非技术摘要 * 在今天的电子设备中,电子是通过它们的电荷来操纵的。 然而,电子有另一种性质,称为“自旋”。 电子的行为就好像它们绕着一个轴旋转。 根据量子力学,电子的自旋轴只能指向两个方向之一,即“向上”或“向下”。 在大多数材料中,上电子和下电子的数量相等,通常这两种类型对电场的反应方式相同。 然而,在磁性材料中,上自旋和下自旋电子的数量可能不同,并且这两种类型的电子可能以不同的方式响应电场。 这种现象的最极端的例子是“半金属”-这意味着一组电子是金属,另一组是绝缘体。一个具体的技术目标是设计、制造和演示具有精心控制的磁特性的半金属,以满足非易失性磁性存储器(旨在取代传统的RAM)的要求。我们的目标是提供一般的半金属和磁性材料的更好的理解,特别是如何可以将“第一原理”计算与实验上可访问的和技术上相关的材料和器件参数。该项目将有助于通过为本科生和高中生提供研究经验来增加STEM劳动力,并将通过其组成和与HBCU教师的合作来增强其多样性。UA和UVa的几个跨学科课程将被开发,以快速将学到的经验教训融入课堂,并为学生提供尖端的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avik Ghosh其他文献
A theoretical approach to enhance light harvesting in dye-sensitized solar cells through strategic Ni-porphyrin dye modifications
一种通过对镍卟啉染料进行策略性改性以提高染料敏化太阳能电池采光的理论方法
- DOI:
10.1016/j.solener.2025.113493 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:6.600
- 作者:
Rama Rathi;Soumadip Banerjee;Ishita Bhattacharya;Avik Ghosh;Abhijit K. Das - 通讯作者:
Abhijit K. Das
Performance Analysis of Genetic Algorithm as a Stochastic Optimization Tool in Engineering Design Problems
遗传算法作为随机优化工具在工程设计问题中的性能分析
- DOI:
10.1117/12.886383 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
R. Basak;A. Sanyal;Arabinda Das;Avik Ghosh;A. Poddar - 通讯作者:
A. Poddar
Hybrid Machine Learning Forecasting for Online MPC of Work Place Electric Vehicle Charging
工作场所电动汽车充电在线 MPC 的混合机器学习预测
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:9.6
- 作者:
Graham McClone;Avik Ghosh;Adil Khurram;B. Washom;J. Kleissl - 通讯作者:
J. Kleissl
Energetics and Spectroscopic Properties of Low‐lying CaC
6
H
2
Isomers: An Astrochemical Perspective
低位 CaC 6 H 2 异构体的能量学和光谱性质:天体化学视角
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.1
- 作者:
Avik Ghosh;Soumadip Banerjee;S. Sarkar;Tanay Debnath;Tamalika Ash;R. S. Roy;Abhijit K. Das - 通讯作者:
Abhijit K. Das
Theoretical exploration of H2X (X = O, S, Se) and HY (Y = F, Cl, Br) assisted H2-release from ammonia-borane and related compounds: mechanistic insights from theoretical viewpoint
H2X(X = O、S、Se)和 HY(Y = F、Cl、Br)辅助氨硼烷及相关化合物释放 H2 的理论探索:从理论角度的机理见解
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.7
- 作者:
Avik Ghosh;Tamalika Ash;Tanay Debnath;Abhijit K. Das - 通讯作者:
Abhijit K. Das
Avik Ghosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Avik Ghosh', 18)}}的其他基金
Collaborative Research: DMREF: Transforming Photonics and Electronics with Digital Alloy Materials
合作研究:DMREF:用数字合金材料改变光子学和电子学
- 批准号:
2118676 - 财政年份:2021
- 资助金额:
$ 26.45万 - 项目类别:
Standard Grant
Phase II IUCRC at University of Virginia: Center for Multi-functional Integrated System Technology (MIST)
弗吉尼亚大学 IUCRC 第二阶段:多功能集成系统技术中心 (MIST)
- 批准号:
1939012 - 财政年份:2020
- 资助金额:
$ 26.45万 - 项目类别:
Continuing Grant
Band Engineering for High Gain Digital III-V Avalanche Photodiodes
高增益数字 III-V 雪崩光电二极管的频带工程
- 批准号:
1936016 - 财政年份:2019
- 资助金额:
$ 26.45万 - 项目类别:
Standard Grant
Phase I Site Addition: I/UCRC for Multi-Functional Integrated System Technology (MIST) Center
第一阶段扩建:I/UCRC 多功能集成系统技术 (MIST) 中心
- 批准号:
1738752 - 财政年份:2017
- 资助金额:
$ 26.45万 - 项目类别:
Standard Grant
Collaborative Research: Planning Grant: I/UCRC for Next Generation Nanomaterial and Device Engineering (NGeNE)
合作研究:规划资助:I/UCRC 下一代纳米材料和器件工程 (NGeNE)
- 批准号:
1464641 - 财政年份:2015
- 资助金额:
$ 26.45万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Atomic scale to circuit modeling of emerging nanoelectronic devices and adapting them to SPICE simulation package
SHF:中:协作研究:新兴纳米电子器件的原子尺度电路建模并使它们适应 SPICE 仿真包
- 批准号:
1514219 - 财政年份:2015
- 资助金额:
$ 26.45万 - 项目类别:
Standard Grant
IDR: Molecular engineering of thermal interfaces
IDR:热界面的分子工程
- 批准号:
1134311 - 财政年份:2011
- 资助金额:
$ 26.45万 - 项目类别:
Standard Grant
CAREER-QMHP: Understanding Electron dynamics at the nano-micro interface
CAREER-QMHP:了解纳米-微米界面的电子动力学
- 批准号:
0748009 - 财政年份:2008
- 资助金额:
$ 26.45万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 26.45万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 26.45万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 26.45万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 26.45万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 26.45万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 26.45万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 26.45万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 26.45万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 26.45万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 26.45万 - 项目类别:
Standard Grant