Analysis of Liquid Crystal and Ideal Gas Equations
液晶和理想气体方程的分析
基本信息
- 批准号:1236959
- 负责人:
- 金额:$ 9.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ZhengDMS-0908207 The investigator studies the Euler equations modelinginviscid fluids, and nonlinear variational wave equationsmodeling liquid crystals. His objective is to gain betterunderstanding of complicated phenomena, such as defects in liquidcrystals and shocks in fluid flows, that show themselves assingularities or shocks in the solutions of the equations. Themethods include hard, soft, and asymptotic analysis, numericalcomputation, and techniques of mathematical modeling. In thefluids topic the investigator explores the role of symmetry indescribing the structure of solutions to shock reflectionproblems for the multi-dimensional Euler equations. This bearson the von Neumann paradox. The issue in the nematic liquidcrystals topic is to provide a quantitative as well asqualitative foundation for manipulating the effect of defects inelectronic devices. The investigation of these mathematicalissues (1) yields new understanding regarding fluids and liquidcrystals, which are critical for the advancement of manyengineering sciences such as aerospace engineering, robotdesigning, and energy efficient devices; (2) provides advancedtraining for graduate students or postdoctoral researchers; (3)enhances collaboration and cross training of faculties betweenmathematics, materials science, and physics, thereby establishinga foundation for training students in these broad areas. The investigator studies some applied mathematical problemsin fluid dynamics (which includes the motion of air and water)and in liquid crystal physics in materials science. Scientistsand engineers have used certain mathematical equations, calledpartial differential equations, to model motion or change in asystem. Turbulence in fluids and defects in materials show up inthe form of singularities and instabilities in the solutions ofthe equations that model the behavior of the systems. Even incases where the equations are quite simple, it is thesesingularities and instabilities that often spoil accuratenumerical computations of the solutions. The investigator usesstate of the art analytical tools to study the structures of thesolutions. In the case of a compressible gas such as air, forexample, he isolates typical singularities (hurricanes,tornadoes, shocks, etc.) and investigates their individualstructures. The result of the investigation is a clearerunderstanding of the worst possible solutions, or of thestructure of solutions. Such results quantify our knowledge ofthe physics and offer guidance in high-performance numericalcomputations of general solutions. Results here influencescientific areas such as weather forecasting, fluid dynamics, andmaterials science, and provide critical knowledge for theadvancement of many application areas such as aerospaceengineering, robot design, and energy efficient devices. Inaddition, the project provides advanced training for graduatestudents and postdoctoral researchers and enhances collaborationand cross training of faculties between mathematics, materialsscience, and physics.
郑DMS-0908207研究了模拟无粘流体的欧拉方程和模拟液晶的非线性变分波动方程。他的目标是更好地理解复杂的现象,如液体晶体中的缺陷和流体流动中的冲击,这些现象在方程的解中表现出奇性或冲击。方法包括硬分析、软分析、渐近分析、数值计算和数学建模技术。在流体主题中,研究人员探索了对称性在描述多维欧拉方程激波反射问题的解的结构中的作用。这是冯·诺伊曼悖论的写照。向列型液晶的主题是为控制电子器件中缺陷的影响提供一个定量和定性的基础。对这些数学问题的研究:(1)对流体和液体晶体有了新的认识,它们对许多工程科学的发展至关重要,如航空航天工程、机器人设计和节能设备;(2)为研究生或博士后研究人员提供高级培训;(3)加强数学、材料科学和物理学之间的合作和交叉培训,从而为在这些广泛领域培养学生奠定基础。研究人员研究了流体力学(包括空气和水的运动)和材料科学中的液晶物理中的一些应用数学问题。科学家和工程师使用某些数学方程,称为偏微分方程式,来模拟系统中的运动或变化。流体中的湍流和材料中的缺陷在模拟系统行为的方程的解中以奇点和不稳定性的形式表现出来。即使在方程非常简单的情况下,正是这些奇性和不稳定性经常破坏解的精确数值计算。调查者使用最先进的分析工具来研究溶液的结构。在可压缩气体的情况下,例如,他分离出典型的奇点(飓风、龙卷风、冲击波等)。并研究了它们的个体结构。调查的结果是对最糟糕的可能解决方案或解决方案的结构有了更清晰的理解。这样的结果量化了我们的物理知识,并为一般解的高性能数值计算提供了指导。这里的成果影响到天气预报、流体力学和材料科学等科学领域,并为许多应用领域的进步提供关键知识,如航空航天工程、机器人设计和节能设备。此外,该项目为研究生和博士后研究人员提供高级培训,并加强数学、材料科学和物理之间的合作和交叉培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuxi Zheng其他文献
Comparison of Techniques for Correction of Chin-down Vertical Abnormal Head Position Associated with Infantile Nystagmus Syndrome
- DOI:
10.1016/j.ajo.2020.01.008 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
James J. Law;Yuxi Zheng;Derick G. Holt;David G. Morrison;Sean P. Donahue - 通讯作者:
Sean P. Donahue
Concentration-cancellation for the velocity fields in two dimensional incompressible fluid flows
- DOI:
10.1007/bf02104122 - 发表时间:
1991-01-01 - 期刊:
- 影响因子:2.600
- 作者:
Yuxi Zheng - 通讯作者:
Yuxi Zheng
Concentrations in the one-dimensional Vlasov-Poisson equations. II: screening and the necessity for measure-valued solutions in the two component case
一维 Vlasov-Poisson 方程中的浓度。
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
A. Majda;G. Majda;Yuxi Zheng - 通讯作者:
Yuxi Zheng
Semi-Hyperbolic Waves in Two-Dimensional Compressible Euler Systems
- DOI:
10.1007/978-1-4419-9554-4_27 - 发表时间:
2011 - 期刊:
- 影响因子:2.3
- 作者:
Yuxi Zheng - 通讯作者:
Yuxi Zheng
Management of Strabismus Associated With Infantile Nystagmus Syndrome: A Novel Classification to Assist in Surgical Planning
- DOI:
10.1016/j.ajo.2019.08.016 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:
- 作者:
Yuxi Zheng;Derick G. Holt;James J. Law;David G. Morrison;Sean P. Donahue - 通讯作者:
Sean P. Donahue
Yuxi Zheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuxi Zheng', 18)}}的其他基金
Analysis of Liquid Crystal and Ideal Gas Equations
液晶和理想气体方程的分析
- 批准号:
0908207 - 财政年份:2009
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
Analysis of Equations in the Applied Sciences
应用科学中的方程分析
- 批准号:
0603859 - 财政年份:2006
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
- 批准号:
0244257 - 财政年份:2003
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
Analysis of Equations in the Physical, Material, and Life Sciences
物理、材料和生命科学中的方程分析
- 批准号:
0305114 - 财政年份:2003
- 资助金额:
$ 9.43万 - 项目类别:
Continuing Grant
Singular Solutions to Certain Equations in the Physical Sciences
物理科学中某些方程的奇异解
- 批准号:
0226894 - 财政年份:2002
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
Singular Solutions to Certain Equations in the Physical Sciences
物理科学中某些方程的奇异解
- 批准号:
0071858 - 财政年份:2000
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
Mathematical Sciences: Structure of Solutions to Certain Equations in the Physical Sciences
数学科学:物理科学中某些方程解的结构
- 批准号:
9703711 - 财政年份:1997
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
Mathematical Sciences: 1-D Vlasov-Poisson and 2-D Euler Equations with Measures as Initial Data
数学科学:以测量值作为初始数据的一维弗拉索夫-泊松方程和二维欧拉方程
- 批准号:
9303414 - 财政年份:1993
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
相似国自然基金
研究和探索一维范德华材料中的Luttinger liquid物理和摩尔超晶格物理
- 批准号:12174335
- 批准年份:2021
- 资助金额:62 万元
- 项目类别:面上项目
相似海外基金
Application of Spectroscopic Image Analysis Technology Using Liquid Crystal Tunable Filter to Fruit Vegetable Ripening Judgment System
液晶可调谐滤波器光谱图像分析技术在果蔬成熟判断系统中的应用
- 批准号:
23K05141 - 财政年份:2023
- 资助金额:
$ 9.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis of nematic liquid crystal flows
向列液晶流动的数学分析
- 批准号:
21K13819 - 财政年份:2021
- 资助金额:
$ 9.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Integrated, photoactive-liquid crystal modulators characterised by optical, multi-parameter analysis
以光学多参数分析为特征的集成光敏液晶调制器
- 批准号:
2897721 - 财政年份:2020
- 资助金额:
$ 9.43万 - 项目类别:
Studentship
Internal strain analysis in bent soft material by a cholesteric liquid crystal elastomer
胆甾型液晶弹性体对弯曲软材料的内应变分析
- 批准号:
20K15339 - 财政年份:2020
- 资助金额:
$ 9.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tubular phononic crystal sensor platform for (bio)chemical liquid analysis
用于(生物)化学液体分析的管状声子晶体传感器平台
- 批准号:
406626998 - 财政年份:2018
- 资助金额:
$ 9.43万 - 项目类别:
Research Grants
Collaborative Research: DNA Packing of Bacteriophages: Liquid Crystal Modeling through Analysis, Knot Theory and Numerical Simulation.
合作研究:噬菌体的 DNA 包装:通过分析、结理论和数值模拟进行液晶建模。
- 批准号:
1817156 - 财政年份:2018
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
Collaborative Research: DNA Packing of Bacteriophages: Liquid Crystal Modeling through Analysis, Knot Theory and Numerical Simulation
合作研究:噬菌体的 DNA 包装:通过分析、结理论和数值模拟进行液晶建模
- 批准号:
1816740 - 财政年份:2018
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1522869 - 财政年份:2014
- 资助金额:
$ 9.43万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1265574 - 财政年份:2013
- 资助金额:
$ 9.43万 - 项目类别:
Continuing Grant
Numerical Methods for Large Scale Liquid Crystal Director Models and Analysis of Electric-Field-Induced Instabilities
大规模液晶导向器模型的数值方法和电场引起的不稳定性分析
- 批准号:
1211597 - 财政年份:2012
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant