Analysis of Equations in the Applied Sciences
应用科学中的方程分析
基本信息
- 批准号:0603859
- 负责人:
- 金额:$ 18.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ZhengDMS-0603859 The investigator studies the Euler equations modelinginviscid fluids, Cahn-Hilliard and Ginzburg-Landau equations inphase-field modeling of alloys, and nonlinear variational waveequations modeling liquid crystals. His objectives are to gainboth better understanding and simplifications of complexity(which includes complexity reduction for multi-dimensional shockreflection problems), of the effect of solutes on the enhancementof strength of alloys, and of the mechanism of singularityformation in air, water, and liquid crystals. The methodsinclude hard, soft, and asymptotic analysis, numericalcomputation, and techniques of mathematical modeling. Themathematical issues are fundamental for the understanding of therespective subject areas. For instance, a model is sought inmulti-dimensional shock reflection problems to reduce possibleturbulence and thus bring the complexity to a comprehensiblelevel and settle the von Neumann paradoxes (e.g., the paradoxicalboundary between regular shock reflection and Mach reflection). The issue in the phase-field model of alloys is to provide aquantitative as well as qualitative foundation for manipulatingsolutes to strengthen the alloys. Study of these mathematicalissues (1) yields new understanding regarding alloys, liquids,gases, and liquid crystals, which are critical for theadvancement of many engineering sciences such as solid solutionhardening, aerospace engineering, robot designing, and energyefficient devices; (2) provides advanced training for graduatestudents or postdoctoral researchers; (3) enhances collaborationand cross-training between mathematics, material research, andphysics, thereby establishing a foundation for training studentsin this broad area. The investigator studies some applied mathematical problemsin fluid dynamics (which includes the motion of air and water),modeling of alloys, and liquid crystal physics in materialscience. Scientists and engineers have used mathematicalequations, called partial differential equations, to modelmotions or evolution. The turbulent nature of fluid flows,defects in materials, and the complexity of life show up in theform of singularities and instabilities in the solutions of theequations or in the complexity of the equations themselves. Incases where the equations are quite simple, it is thesesingularities and instabilities that often spoil accuratenumerical computations of the solutions. The investigator usesanalytical mathematical tools to study the structures of thesingular solutions. In the case of a compressible gas such asair, for example, he isolates typical singularities (hurricanes,tornadoes, shocks, etc.) and investigates their individualstructures. The result of the investigation is a clearerunderstanding of the worst possible -- most singular --solutions, or a drastic reduction of complexity, which quantifiesour knowledge of the physics and offers guidance inhigh-performance numerical computations of general solutions. Such results influence scientific areas such as weatherforecasting, alloys, liquid, gases, and liquid crystals, andprovide critical knowledge for the advancement of manyengineering sciences such as solid solution hardening, aerospaceengineering, robot design, and energy-efficient devices. Inaddition, the project provides opportunities for advancedtraining for graduate students and postdoctoral researchers andenhances collaboration and cross-training between mathematics,material research, and physics, creating a foundation fortraining students in this broad area.
ZhengDMS-0603859 研究者研究了模拟无粘流体的欧拉方程、模拟合金相场的Cahn-Hilliard和Ginzburg-Landau方程以及模拟液晶的非线性变分波动方程。 他的目标是获得更好的理解和简化的复杂性(其中包括多维激波反射问题的复杂性降低),溶质对合金强度增强的影响,以及空气,水和液晶中奇异性形成的机制。 这些方法包括硬分析、软分析、渐近分析、数值计算和数学建模技术。 数学问题是理解各自学科领域的基础。 例如,在多维激波反射问题中寻求一种模型,以减少可能的湍流,从而使复杂性达到可理解的水平,并解决冯诺依曼悖论(例如,规则激波反射和马赫反射之间的矛盾边界)。合金相场模型的问题是为控制溶质强化合金提供定量和定性的基础。 这些理论问题的研究(1)对合金、液体、气体和液晶产生了新的认识,这些对许多工程科学的发展至关重要,如固溶硬化、航空航天工程、机器人设计和节能装置;(2)为研究生或博士后研究人员提供了高级培训;(3)加强数学、材料研究和物理学之间的合作和交叉训练,从而为培养这一广泛领域的学生奠定基础。 研究人员研究流体动力学(包括空气和水的运动),合金建模和材料科学中的液晶物理学中的一些应用数学问题。 科学家和工程师们已经使用偏微分方程来模拟运动或进化。 流体流动的湍流性质、材料中的缺陷以及生命的复杂性都以方程解中的奇异性和不稳定性的形式或以方程本身的复杂性的形式表现出来。 在方程相当简单的情况下,正是这些奇异性和不稳定性常常破坏解的精确数值计算。 研究者使用分析数学工具来研究奇异解的结构。 例如,在可压缩气体(如空气)的情况下,他隔离了典型的奇点(飓风、龙卷风、冲击等)。and investigates调查their其individual个人structures结构. 调查的结果是一个更清楚的了解最糟糕的可能-最奇异的-解决方案,或急剧减少的复杂性,这量化了我们的物理知识,并提供指导,在高性能的数值计算的一般解决方案。这些结果影响了天气预报、合金、液体、气体和液晶等科学领域,并为固溶体硬化、航空航天工程、机器人设计和节能设备等许多工程科学的发展提供了关键知识。 此外,该项目还为研究生和博士后研究人员提供了高级培训的机会,并加强了数学,材料研究和物理学之间的合作和交叉培训,为培养这一广泛领域的学生奠定了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuxi Zheng其他文献
Concentration-cancellation for the velocity fields in two dimensional incompressible fluid flows
- DOI:
10.1007/bf02104122 - 发表时间:
1991-01-01 - 期刊:
- 影响因子:2.600
- 作者:
Yuxi Zheng - 通讯作者:
Yuxi Zheng
Comparison of Techniques for Correction of Chin-down Vertical Abnormal Head Position Associated with Infantile Nystagmus Syndrome
- DOI:
10.1016/j.ajo.2020.01.008 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
James J. Law;Yuxi Zheng;Derick G. Holt;David G. Morrison;Sean P. Donahue - 通讯作者:
Sean P. Donahue
Concentrations in the one-dimensional Vlasov-Poisson equations. II: screening and the necessity for measure-valued solutions in the two component case
一维 Vlasov-Poisson 方程中的浓度。
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
A. Majda;G. Majda;Yuxi Zheng - 通讯作者:
Yuxi Zheng
Semi-Hyperbolic Waves in Two-Dimensional Compressible Euler Systems
- DOI:
10.1007/978-1-4419-9554-4_27 - 发表时间:
2011 - 期刊:
- 影响因子:2.3
- 作者:
Yuxi Zheng - 通讯作者:
Yuxi Zheng
Management of Strabismus Associated With Infantile Nystagmus Syndrome: A Novel Classification to Assist in Surgical Planning
- DOI:
10.1016/j.ajo.2019.08.016 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:
- 作者:
Yuxi Zheng;Derick G. Holt;James J. Law;David G. Morrison;Sean P. Donahue - 通讯作者:
Sean P. Donahue
Yuxi Zheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuxi Zheng', 18)}}的其他基金
Analysis of Liquid Crystal and Ideal Gas Equations
液晶和理想气体方程的分析
- 批准号:
1236959 - 财政年份:2011
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Analysis of Liquid Crystal and Ideal Gas Equations
液晶和理想气体方程的分析
- 批准号:
0908207 - 财政年份:2009
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
- 批准号:
0244257 - 财政年份:2003
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Analysis of Equations in the Physical, Material, and Life Sciences
物理、材料和生命科学中的方程分析
- 批准号:
0305114 - 财政年份:2003
- 资助金额:
$ 18.73万 - 项目类别:
Continuing Grant
Singular Solutions to Certain Equations in the Physical Sciences
物理科学中某些方程的奇异解
- 批准号:
0226894 - 财政年份:2002
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Singular Solutions to Certain Equations in the Physical Sciences
物理科学中某些方程的奇异解
- 批准号:
0071858 - 财政年份:2000
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Structure of Solutions to Certain Equations in the Physical Sciences
数学科学:物理科学中某些方程解的结构
- 批准号:
9703711 - 财政年份:1997
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Mathematical Sciences: 1-D Vlasov-Poisson and 2-D Euler Equations with Measures as Initial Data
数学科学:以测量值作为初始数据的一维弗拉索夫-泊松方程和二维欧拉方程
- 批准号:
9303414 - 财政年份:1993
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
相似海外基金
Spectral element methods for fractional differential equations, with applications in applied analysis and medical imaging
分数阶微分方程的谱元方法,在应用分析和医学成像中的应用
- 批准号:
EP/T022280/1 - 财政年份:2021
- 资助金额:
$ 18.73万 - 项目类别:
Research Grant
Spectral element methods for fractional differential equations, with applications in applied analysis and medical imaging
分数阶微分方程的谱元方法,在应用分析和医学成像中的应用
- 批准号:
EP/T022132/1 - 财政年份:2021
- 资助金额:
$ 18.73万 - 项目类别:
Research Grant
Applied Analysis of solutions to boundary value problems for evolution equations
演化方程边值问题解的应用分析
- 批准号:
2593211 - 财政年份:2019
- 资助金额:
$ 18.73万 - 项目类别:
Studentship
Applied analysis of equations of incompressible fluid motions
不可压缩流体运动方程的应用分析
- 批准号:
24244007 - 财政年份:2012
- 资助金额:
$ 18.73万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Theory of Differential Equations Applied to Biological Pattern Formation--from Analysis to Synthesis
微分方程理论在生物模式形成中的应用--从分析到综合
- 批准号:
22244010 - 财政年份:2010
- 资助金额:
$ 18.73万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Applied Analysis of Partial Differential Equations and Related Inverse Problems in Mechanics
力学中偏微分方程及相关反问题的应用分析
- 批准号:
1009713 - 财政年份:2010
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
CAREER: Wyoming Applied Analysis & Computing Group: Behavior of Solutions of Nonlinear Partial Differential Equations
职业:怀俄明州应用分析
- 批准号:
0845127 - 财政年份:2009
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Applied Analysis on the Navier-Stokes Equations and Related Dynamical Systems
纳维-斯托克斯方程及相关动力系统的应用分析
- 批准号:
20244006 - 财政年份:2008
- 资助金额:
$ 18.73万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
- 批准号:
0244859 - 财政年份:2003
- 资助金额:
$ 18.73万 - 项目类别:
Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
- 批准号:
9900635 - 财政年份:1999
- 资助金额:
$ 18.73万 - 项目类别:
Continuing Grant