Singular Solutions to Certain Equations in the Physical Sciences

物理科学中某些方程的奇异解

基本信息

  • 批准号:
    0226894
  • 负责人:
  • 金额:
    $ 3.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-02-01 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

0071858ZhengIt is proposed to study some nonlinear partial differential equations from fluid dynamics and liquid crystal physics. These equations are the laws of motion of their respective physics. The turbulent nature and/or defects in the materials make the solutions of the equations singular, unstable, and hard to calculate. It is planned to use advanced analytical tools to study the structures of the singular solutions. In the case of the liquid crystal wave equation, for example, the plan is to study it as one of the simplest examples of nonlinear generalizations of the basic linear wave equation. It can be seen from its elegant form that there will be many applications of the equation in the future. Singularities of its solutions have been shown to exist recently by the principal investigator and his collaborators. It is these singularities that block the establishment of a general theory of existence, uniqueness, and stability of solutions. It is planned to do detailed estimates and analysis on the singularities and improve current compactness arguments to form an existence theory of solutions. The result of the investigation will be a clear understanding of the worst possible solutions, and thereby quantify our knowledge of the physics and offer guidance in numerical computations of general solutions.The research will involve the study of some applied mathematical problems in the fields of fluid dynamics (which includes motion of the air and water) and liquid crystal physics in material science. Scientists and engineers have used mathematical equations, called partial differential equations, to model the motions. The turbulent nature and/or defects in the materials show up in the form of singularities and instabilities in the solutions of the equations. It is these singularities and instabilities that often spoil accurate numerical computations of the solutions. It is planned to use the state of the art analytical tools to study the structures of the singular solutions. In the case of a compressible gas such as air, for example, the principal investigator plans to isolate typical singularities (hurricanes, tornadoes, shocks, etc.) and investigate their individual structures. The result of the investigation will be a clear understanding of the worst possible solutions, and thereby quantify our knowledge of the physics and offer guidance in high-performance numerical computations of general solutions.
建议从流体力学和液晶物理的角度来研究一些非线性偏微分方程组。这些方程是它们各自的物理运动定律。材料中的湍流性质和/或缺陷使得方程的解奇异、不稳定,并且很难计算。计划使用先进的分析工具来研究奇异解的结构。例如,在液晶波动方程的情况下,计划将其作为基本线性波动方程的非线性推广的最简单示例之一来研究。从其优雅的形式可以看出,该方程在未来将有许多应用。它的解的奇异性最近已经被主要研究者和他的合作者证明是存在的。正是这些奇点阻碍了解的存在、唯一性和稳定性的一般理论的建立。计划对奇点进行详细的估计和分析,并改进现有的紧致性论证,形成解的存在理论。研究的结果将是对最差可能解的清楚了解,从而量化我们的物理知识,并为一般解的数值计算提供指导。这项研究将涉及流体动力学(包括空气和水的运动)和材料科学中的液晶物理领域的一些应用数学问题的研究。科学家和工程师使用被称为偏微分方程式的数学方程来模拟这些运动。材料中的湍流性质和/或缺陷在方程的解中以奇性和不稳定性的形式表现出来。正是这些奇点和不稳定性经常破坏解的精确数值计算。计划使用最先进的分析工具来研究奇异解的结构。例如,在空气等可压缩气体的情况下,首席研究员计划分离出典型的奇点(飓风、龙卷风、冲击波等)。并研究它们各自的结构。调查的结果将是清楚地了解最糟糕的可能解,从而量化我们对物理的知识,并在一般解的高性能数值计算中提供指导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuxi Zheng其他文献

Comparison of Techniques for Correction of Chin-down Vertical Abnormal Head Position Associated with Infantile Nystagmus Syndrome
  • DOI:
    10.1016/j.ajo.2020.01.008
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    James J. Law;Yuxi Zheng;Derick G. Holt;David G. Morrison;Sean P. Donahue
  • 通讯作者:
    Sean P. Donahue
Concentration-cancellation for the velocity fields in two dimensional incompressible fluid flows
Concentrations in the one-dimensional Vlasov-Poisson equations. II: screening and the necessity for measure-valued solutions in the two component case
一维 Vlasov-Poisson 方程中的浓度。
  • DOI:
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Majda;G. Majda;Yuxi Zheng
  • 通讯作者:
    Yuxi Zheng
Semi-Hyperbolic Waves in Two-Dimensional Compressible Euler Systems
  • DOI:
    10.1007/978-1-4419-9554-4_27
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Yuxi Zheng
  • 通讯作者:
    Yuxi Zheng
Management of Strabismus Associated With Infantile Nystagmus Syndrome: A Novel Classification to Assist in Surgical Planning
  • DOI:
    10.1016/j.ajo.2019.08.016
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yuxi Zheng;Derick G. Holt;James J. Law;David G. Morrison;Sean P. Donahue
  • 通讯作者:
    Sean P. Donahue

Yuxi Zheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuxi Zheng', 18)}}的其他基金

Analysis of Liquid Crystal and Ideal Gas Equations
液晶和理想气体方程的分析
  • 批准号:
    1236959
  • 财政年份:
    2011
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Standard Grant
Analysis of Liquid Crystal and Ideal Gas Equations
液晶和理想气体方程的分析
  • 批准号:
    0908207
  • 财政年份:
    2009
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Standard Grant
Analysis of Equations in the Applied Sciences
应用科学中的方程分析
  • 批准号:
    0603859
  • 财政年份:
    2006
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
  • 批准号:
    0244257
  • 财政年份:
    2003
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Standard Grant
Analysis of Equations in the Physical, Material, and Life Sciences
物理、材料和生命科学中的方程分析
  • 批准号:
    0305114
  • 财政年份:
    2003
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Continuing Grant
Singular Solutions to Certain Equations in the Physical Sciences
物理科学中某些方程的奇异解
  • 批准号:
    0071858
  • 财政年份:
    2000
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Structure of Solutions to Certain Equations in the Physical Sciences
数学科学:物理科学中某些方程解的结构
  • 批准号:
    9703711
  • 财政年份:
    1997
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Standard Grant
Mathematical Sciences: 1-D Vlasov-Poisson and 2-D Euler Equations with Measures as Initial Data
数学科学:以测量值作为初始数据的一维弗拉索夫-泊松方程和二维欧拉方程
  • 批准号:
    9303414
  • 财政年份:
    1993
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Standard Grant

相似海外基金

Combinatorics of special polynomials associated to certain solutions of Painleve equations
与 Painleve 方程的某些解相关的特殊多项式的组合
  • 批准号:
    15K13425
  • 财政年份:
    2015
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Structure of Solutions of the Time Dependent Schroedinger Equation and of Certain Classes of Evolution Nonlinear PDEs
瞬态薛定谔方程和某些类演化非线性偏微分方程解的结构
  • 批准号:
    0600369
  • 财政年份:
    2006
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Continuing grant
Asymptotic behavior of solutions of a certain quasi non-linear operator and its application to geometric function theory
某拟非线性算子解的渐近行为及其在几何函数论中的应用
  • 批准号:
    13640169
  • 财政年份:
    2001
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singular Solutions to Certain Equations in the Physical Sciences
物理科学中某些方程的奇异解
  • 批准号:
    0071858
  • 财政年份:
    2000
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Standard Grant
Existence and qualitative properties of solutions to certain differential equations
某些微分方程解的存在性和定性性质
  • 批准号:
    184173-1996
  • 财政年份:
    1999
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and qualitative properties of solutions to certain differential equations
某些微分方程解的存在性和定性性质
  • 批准号:
    184173-1996
  • 财政年份:
    1998
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and qualitative properties of solutions to certain differential equations
某些微分方程解的存在性和定性性质
  • 批准号:
    184173-1996
  • 财政年份:
    1997
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Sciences: Structure of Solutions to Certain Equations in the Physical Sciences
数学科学:物理科学中某些方程解的结构
  • 批准号:
    9703711
  • 财政年份:
    1997
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Standard Grant
Existence and qualitative properties of solutions to certain differential equations
某些微分方程解的存在性和定性性质
  • 批准号:
    184173-1996
  • 财政年份:
    1996
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Sciences: Regularity Theory for Certain Nonlinear Elliptic Equations Involving Derivatives of Rearrangements of Solutions
数学科学:涉及解重排导数的某些非线性椭圆方程的正则理论
  • 批准号:
    9196040
  • 财政年份:
    1990
  • 资助金额:
    $ 3.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了