Program on Inverse Problems and Imaging at the Fields Institute in 2012

2012年菲尔兹研究所反问题与成像项目

基本信息

  • 批准号:
    1240698
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

This project will support research and educational activities as part of the Thematic Program on Inverse Problems and Imaging at the Fields Institute in 2012. The organizers aim to create an environment conducive to collaborative research by combining the particiapnts' high-level expertise from Partial Differential Equations, Nonlinear Variational Methods, Differential Geometry, Regularization Theory and Numerical Analysis. Techniques initially developed in image processing or in microlocal analysis will be extended to treat novel hybrid inverse problems. Modern faster and more accurate optimization techniques for recovering data from undersampled measurements will be explored. Nonlocal methods have been recently proven to be the most efficient techniques in image denoising and image regularization. Current and future directions for solving a large range of inverse problems by nonlocal methods and their computational challenges will be studied.By integrating research and education, the organizers will introduce next generation researchers in Medical Imaging to the recent important and deep mathematical advances in the field. Numerous lectures, graduate and short courses will be given by leading researchers in the fields of inverse problems and imaging. These problems have important applications in medical imaging, geophysical prospecting and nondestructive testing. Graduate and postdoctoral students will greatly benefit from being exposed to these most active areas of research in mathematics today. They will also be exposed to interdisciplinary research mixing theoretical advances with up to date applied issues. Women and underrepresented groups will be given the opportunity to actively participate in the program as organizers, speakers, and regular participants. Teams of graduate students will be offered a summer research experience on concrete problems in medical imaging.
该项目将支持研究和教育活动,作为2012年菲尔兹研究所反问题和成像专题方案的一部分。组织者旨在通过结合参与者的偏微分方程,非线性变分方法,微分几何,正则化理论和数值分析的高水平专业知识,创造一个有利于合作研究的环境。最初在图像处理或微局部分析中开发的技术将被扩展到处理新的混合反问题。现代更快,更准确的优化技术,从欠采样测量恢复数据将被探索。近年来,非局部方法被证明是图像去噪和图像正则化中最有效的方法。通过将研究与教育相结合,组织者将向医学成像领域的下一代研究人员介绍该领域最近重要而深入的数学进展。许多讲座,研究生和短期课程将由反问题和成像领域的领先研究人员提供。这些问题在医学成像、地球物理勘探和无损检测等领域有着重要的应用。 研究生和博士后学生将大大受益于接触到这些最活跃的数学研究领域。他们还将接触到跨学科研究,将理论进步与最新的应用问题相结合。妇女和代表性不足的群体将有机会作为组织者、发言人和经常参与者积极参与该方案。研究生团队将提供一个夏季的研究经验,在医学成像的具体问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luminita Vese其他文献

Guest Editorial: Shape Analysis Beyond the Eikonal Equation

Luminita Vese的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luminita Vese', 18)}}的其他基金

Computational Methods for Applications in Imaging and Remote Sensing
成像和遥感应用的计算方法
  • 批准号:
    2012868
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Functional Analysis and Computational Methods in Imaging, Materials, and Atmospheric Sciences
成像、材料和大气科学中的函数分析和计算方法
  • 批准号:
    1217239
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
New variational computational methods for modeling dual spaces of distributions, decomposition of functions, oscillations, and inverse problems in image analysis
用于对图像分析中的分布双空间、函数分解、振荡和反演问题进行建模的新变分计算方法
  • 批准号:
    0714945
  • 财政年份:
    2007
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
ITR/AP: Variational-PDE Models Using Level Sets for Computer Vision
ITR/AP:使用水平集进行计算机视觉的变分偏微分方程模型
  • 批准号:
    0113439
  • 财政年份:
    2001
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

新型简化Inverse Lax-Wendroff方法的发展与应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
  • 批准号:
    11801143
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
  • 批准号:
    EP/Y030249/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
Travel: US Participation at the 11th International Conference on Inverse Problems in Engineering
出差:美国参加第11届工程反问题国际会议
  • 批准号:
    2347919
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Understanding, Predicting and Controlling AI Hallucination in Diffusion Models for Image Inverse Problems
理解、预测和控制图像逆问题扩散模型中的 AI 幻觉
  • 批准号:
    2906295
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Studentship
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
  • 批准号:
    23K13012
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Forward and Inverse Problems for Topological Insulators and Kinetic Equations
拓扑绝缘体和动力学方程的正逆问题
  • 批准号:
    2306411
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Conference: CBMS Conference: Inverse Problems and Nonlinearity
会议:CBMS 会议:反问题和非线性
  • 批准号:
    2329399
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Gaussian process regression for Bayesian inverse problems
贝叶斯逆问题的高斯过程回归
  • 批准号:
    EP/X01259X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
Study of Instabilities in Phase Transitions, Shell Buckling, and Inverse Problems
相变不稳定性、壳屈曲和反问题的研究
  • 批准号:
    2305832
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Inverse Problems Arising from Kinetic Theory and Applications
动力学理论及其应用产生的反问题
  • 批准号:
    2306221
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Frames as dictionaries in inverse problems: Recovery guarantees for structured sparsity, unstructured environments, and symmetry-group identification
逆问题中的框架作为字典:结构化稀疏性、非结构化环境和对称群识别的恢复保证
  • 批准号:
    2308152
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了