Quantum Information Meets Mathematics: the Blessing of High Dimension

量子信息遇上数学:高维的祝福

基本信息

  • 批准号:
    1246497
  • 负责人:
  • 金额:
    $ 10.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

This project involves research on the interface of quantum information science and mathematics. Over the last few years it has become clear that quantum information theory enjoys very close links to geometric functional analysis (Banach space theory, operator spaces, high-dimensional probability) a.k.a. asymptotic geometric analysis, which belongs to the expertise of Dr. Szarek. In a nutshell, asymptotic geometric analysis studies quantitative properties of convex sets (or other geometric structures) and their "approximate" symmetries as the dimension goes to infinity. This makes it ideally suited to the study of quantum systems, where the setting is inherently high-dimensional. While classically analyzing high-dimensional phenomena often suffers from the curse of dimensionality (the complexity of the problem exploding with the increase in dimension, so that the question quickly ceases to be tractable), we may say that asymptotic geometric analysis exploits the blessing of dimensionality, with the symmetries mentioned above becoming apparent only when the dimension is large. Dr. Szarek's goals for this project are centered on acquiring a more thorough understanding of relevant aspects of computer science and of quantum physics, which will permit exploring in greater depth the links between asymptotic geometric analysis and the quantum theory. Subsequent objectives include identifying mathematical techniques that may be helpful in solving known problems and, more generally, in developing mathematical framework pertinent to processes associated with quantum information tasks. Specific problems and issues to be studied are related to distillability, the PPT property, probabilistic models for quantum objects/processes, derandomization and the role of duality.The quest to build a quantum computer is one of the major scientific and technological challenges of the 21st century, and quantum information theory provides the theoretical framework for that quest. A major event in the development of that field will be a semester-long program Mathematical Challenges in Quantum Information, to be held at the Isaac Newton Institute for Mathematical Sciences in Cambridge, England in the fall of 2013. The program will bring together theoretical physicists, computer scientists and mathematicians with interests in the subject and will supply an ideal environment for an interdisciplinary interaction between experts with different backgrounds. NSF funding will support Dr. Szarek's residency at the Newton Institute for the duration of the program. While Dr. Szarek is a theoretical mathematician, the research is expected to contribute to the understanding of the capabilities and limitations of quantum information systems and thus may have far reaching direct and indirect impact. Additionally, the project will ultimately result in involvement of graduate and undergraduate students in intensive research, thus contributing to the development of scientific base and infrastructure.
该项目涉及量子信息科学与数学的接口研究。在过去的几年里,很明显,量子信息理论与几何泛函分析(Banach空间理论、算符空间、高维概率)有非常密切的联系。渐近几何分析,这属于Szarek博士的专长。简而言之,渐近几何分析研究了凸集(或其他几何结构)的数量性质及其随着维度变得无限大而产生的“近似”对称性。这使得它非常适合研究量子系统,因为在量子系统中,设置本身就是高维的。虽然经典的分析高维现象经常遭受维度诅咒(问题的复杂性随着维度的增加而爆炸,因此问题很快就不再是可处理的),但我们可以说渐近几何分析利用了维度的好处,只有当维度很大时,上面提到的对称性才变得明显。沙雷克博士这个项目的目标是更彻底地了解计算机科学和量子物理的相关方面,这将使他能够更深入地探索渐近几何分析和量子理论之间的联系。随后的目标包括确定可能有助于解决已知问题的数学技术,以及更广泛地说,有助于开发与量子信息任务相关的过程的数学框架。需要研究的具体问题和问题涉及蒸馏性、PPT性质、量子对象/过程的概率模型、去随机化和二元性的作用。建造量子计算机是21世纪的主要科学和技术挑战之一,量子信息理论为这一追求提供了理论框架。该领域发展的一个重大事件将是一个为期一学期的量子信息数学挑战项目,该项目将于2013年秋季在英国剑桥的艾萨克·牛顿数学科学研究所举行。该项目将把对该学科感兴趣的理论物理学家、计算机科学家和数学家聚集在一起,并将为不同背景的专家之间的跨学科互动提供理想的环境。NSF的资金将支持沙雷克博士在该项目期间在牛顿研究所的住院治疗。尽管沙雷克是一名理论数学家,但这项研究预计将有助于理解量子信息系统的能力和局限性,因此可能会产生深远的直接和间接影响。此外,该项目最终将导致研究生和本科生参与密集的研究,从而促进科学基础和基础设施的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stanislaw Szarek其他文献

The cotype constant and an almost euclidean decomposition for finite-dimensional normed spaces
  • DOI:
    10.1007/bf02776082
  • 发表时间:
    1985-03-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Stephen Dilworth;Stanislaw Szarek
  • 通讯作者:
    Stanislaw Szarek

Stanislaw Szarek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stanislaw Szarek', 18)}}的其他基金

Travel support for US participants in the trimester "Analysis in Quantum Information Theory" at the Institute Henri Poincare
为美国亨利庞加莱研究所三个月期“量子信息理论分析”参与者提供差旅支持
  • 批准号:
    1700168
  • 财政年份:
    2017
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Standard Grant
The Blessing of High Dimension: Asymptotic Geometric Analysis and Its Applications
高维的祝福:渐近几何分析及其应用
  • 批准号:
    1600124
  • 财政年份:
    2016
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Continuing Grant
The Blessing of High Dimension: Asymptotic Geometric Analysis and Its Applications
高维的祝福:渐近几何分析及其应用
  • 批准号:
    0801275
  • 财政年份:
    2008
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
  • 批准号:
    0652722
  • 财政年份:
    2007
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Standard Grant
Topics in Asymptotic Geometric Analysis and its Applications
渐近几何分析及其应用专题
  • 批准号:
    0503642
  • 财政年份:
    2005
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Continuing Grant
Asymptotic Geometric Analysis: Matrices, Operators and Noncommutative Phenomena
渐近几何分析:矩阵、运算符和非交换现象
  • 批准号:
    0109362
  • 财政年份:
    2001
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric & Probabilistic Aspects of Convexity and Functional Analysis
数学科学:几何
  • 批准号:
    9623984
  • 财政年份:
    1996
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Banach Spaces, Convexity and Operators
数学科学:Banach 空间、凸性和运算符
  • 批准号:
    9311595
  • 财政年份:
    1993
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Standard Grant
US-Poland Research on Convexity and Operators
美国-波兰关于凸性和算子的研究
  • 批准号:
    9216782
  • 财政年份:
    1992
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Banach Spaces, Operators and Related Topics
数学科学:Banach 空间、运算符及相关主题
  • 批准号:
    9007889
  • 财政年份:
    1990
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Continuing Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Quantum Information Meets Quantum Matter: Long Range Entanglement and Dynamics Across Quantum Phase Transitions
量子信息遇上量子物质:量子相变的长程纠缠和动力学
  • 批准号:
    2138905
  • 财政年份:
    2022
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Continuing Grant
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2022
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Discovery Grants Program - Individual
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2021
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Discovery Grants Program - Individual
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2020
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Discovery Grants Program - Individual
III:Small: Optimal Query Processing meets Information Theory: from Proofs to Algorithms
III:Small:最优查询处理遇到信息论:从证明到算法
  • 批准号:
    1907997
  • 财政年份:
    2019
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Continuing Grant
CIF: Small: Information Theory Meets Deep Learning: Universal Probability and Common Information for High-Dimensional Data
CIF:小:信息论遇见深度学习:高维数据的普遍概率和公共信息
  • 批准号:
    1911238
  • 财政年份:
    2019
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Standard Grant
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2019
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Discovery Grants Program - Individual
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    RGPIN-2018-04502
  • 财政年份:
    2018
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Discovery Grants Program - Individual
Decoding a black hole: quantum information theory meets quantum gravity
解码黑洞:量子信息论遇上量子引力
  • 批准号:
    DGECR-2018-00326
  • 财政年份:
    2018
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Discovery Launch Supplement
Quantum information meets quantum gravity
量子信息遇上量子引力
  • 批准号:
    1923790
  • 财政年份:
    2017
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了