The Blessing of High Dimension: Asymptotic Geometric Analysis and Its Applications
高维的祝福:渐近几何分析及其应用
基本信息
- 批准号:1600124
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project involves research in an area lately referred to as asymptotic geometric analysis. Particular attention will be paid to links with other areas of mathematics and other mathematical and physical sciences, which motivate most of the problems being considered. Since the number of free parameters in the underlying problem can often be related to the dimension of sets in the corresponding mathematical model, and since real-life problems usually involve very many parameters, the high-dimensional setting is of particular interest. This is especially true for quantum theory, where systems consisting of just several particles naturally lead to models whose dimension is from thousands to billions. While classical analysis of high-dimensional phenomena often suffers from the curse of dimensionality (the complexity of the problem explodes with the increase in dimension so that the question quickly ceases to be tractable), we may say that asymptotic geometric analysis exploits the blessing of dimensionality by identifying and exploiting "approximate symmetries", which become apparent only when the dimension is large. This project is an attempt to implement this philosophy in selected directions of research, most notably in those related to quantum information theory, the interdisciplinary area that provides theoretical underpinnings for the project of building a quantum computer, which is one of the major scientific and technological challenges of the 21st century. Additionally, the project will involve graduate and undergraduate students in intensive research, thus contributing to development of human resources in science. In the same vein, one of the products of the project will be a book surveying the interface of asymptotic geometric analysis and quantum information theory, likewise contributing to the development of scientific base and infrastructure and to the promotion of interdisciplinarity. Analysis is a study of functions, or relationships between quantities, and particularly of their regularity properties. Since very many naturally appearing relationships are linear or at least convex, a good understanding of convex functions and sets is a prerequisite for understanding those relationships. The emphasis of the proposed research will be on the high-dimensional setting. Sample research topics to be studied include: structural properties of high-dimensional convex sets and of high dimensional normed spaces, derandomization of various probabilistic constructions appearing in functional analysis, and problems motivated by links to operations research. Most notably, the project will address geometric questions related to quantum information theory and quantum computing, for example those related to the positive partial transpose property. The questions typically are (or can be) expressed in the language of the geometry of Banach spaces or of high-dimensional probability and are to be analyzed primarily by using the diverse methods that originated or were developed in those contexts.
该项目涉及最近称为渐近几何分析的领域的研究。特别关注与其他数学和其他数学和物理科学领域的联系,这激发了所考虑的大多数问题。由于基本问题中的自由参数的数量通常与相应的数学模型中集合的维度有关,并且由于现实生活中的问题通常涉及很多参数,因此高维设置特别感兴趣。对于量子理论尤其如此,在量子理论中,仅由几个粒子组成的系统自然会导致其尺寸从数千到数十亿的模型。虽然对高维现象的经典分析通常受到维数的诅咒(问题的复杂性随维度的增加而爆炸,因此问题迅速不再是可触及的),但我们可能会说,渐近几何分析利用仅通过识别和利用“近似symmetries”的尺寸,仅在较大的维度上,就可以通过识别和利用维度。该项目试图在某些研究方向上实施这种哲学,最著名的是与量子信息理论相关的哲学,这是为建造量子计算机的项目提供理论基础的跨学科领域,这是21世纪的主要科学和技术挑战之一。此外,该项目将涉及研究生和本科生参与密集研究,从而有助于科学中的人力资源发展。同样,该项目的一种产品将是一本书,调查渐近几何分析和量子信息理论的界面,同样有助于科学基础和基础设施的发展以及促进跨学科性。分析是对数量尤其是其规律性特性之间的功能或关系的研究。由于许多自然出现的关系是线性的或至少是凸的,因此对凸功能和集合的良好理解是理解这些关系的先决条件。 拟议的研究的重点将是高维环境。 要研究的样本研究主题包括:高维凸组的结构特性和高维规范空间的结构特性,在功能分析中出现的各种概率构建体的延性以及与操作研究链接所激发的问题。最值得注意的是,该项目将解决与量子信息理论和量子计算有关的几何问题,例如与正面偏置属性相关的几何问题。这些问题通常是(或可以)以Banach空间的几何形状或高维概率的语言表达,并且主要是通过使用在这些情况下起源或开发的各种方法来分析的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stanislaw Szarek其他文献
Stanislaw Szarek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stanislaw Szarek', 18)}}的其他基金
Travel support for US participants in the trimester "Analysis in Quantum Information Theory" at the Institute Henri Poincare
为美国亨利庞加莱研究所三个月期“量子信息理论分析”参与者提供差旅支持
- 批准号:
1700168 - 财政年份:2017
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Quantum Information Meets Mathematics: the Blessing of High Dimension
量子信息遇上数学:高维的祝福
- 批准号:
1246497 - 财政年份:2013
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
The Blessing of High Dimension: Asymptotic Geometric Analysis and Its Applications
高维的祝福:渐近几何分析及其应用
- 批准号:
0801275 - 财政年份:2008
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
0652722 - 财政年份:2007
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Topics in Asymptotic Geometric Analysis and its Applications
渐近几何分析及其应用专题
- 批准号:
0503642 - 财政年份:2005
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Asymptotic Geometric Analysis: Matrices, Operators and Noncommutative Phenomena
渐近几何分析:矩阵、运算符和非交换现象
- 批准号:
0109362 - 财政年份:2001
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric & Probabilistic Aspects of Convexity and Functional Analysis
数学科学:几何
- 批准号:
9623984 - 财政年份:1996
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Mathematical Sciences: Banach Spaces, Convexity and Operators
数学科学:Banach 空间、凸性和运算符
- 批准号:
9311595 - 财政年份:1993
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
US-Poland Research on Convexity and Operators
美国-波兰关于凸性和算子的研究
- 批准号:
9216782 - 财政年份:1992
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Mathematical Sciences: Banach Spaces, Operators and Related Topics
数学科学:Banach 空间、运算符及相关主题
- 批准号:
9007889 - 财政年份:1990
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
相似国自然基金
膜融合必需基因缺失的细胞在细胞膜融合方面的适应性进化机制
- 批准号:32300496
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型微流控纳米电穿孔平台在工程化外泌体制备和原位分析方面的研究
- 批准号:22374048
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向内质网-线粒体互作的小分子荧光探针及其在药物评价方面的应用
- 批准号:22367022
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
智慧旅游时代基于方面级情感分析的个性化旅游行程推荐研究
- 批准号:72301100
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
液晶二维偏振光栅及其在光场调控与信息处理方面的应用研究
- 批准号:12374279
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
CAREER: Graph Structural Theorems, Asymptotic Dimension, and Beyond
职业:图结构定理、渐近维数及其他
- 批准号:
2144042 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Sparse statistical approach for multivariate modelling
多元建模的稀疏统计方法
- 批准号:
22K13377 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
High-dimension, low-sample-size asymptotic theory for nonlinear feature selection
用于非线性特征选择的高维、低样本量渐近理论
- 批准号:
20K22305 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Parsimonious statistical modelling for high-dimensional problems
高维问题的简约统计建模
- 批准号:
19K23193 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Surface waves in anisotropic elasticity and piezoelectricity, asymptotic analysis and inverse problems
各向异性弹性和压电中的表面波、渐近分析和反演问题
- 批准号:
19K03559 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)