Regularization with Categorical Covariates: Generalizations and Extensions
分类协变量的正则化:概括和扩展
基本信息
- 批准号:208823904
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2011
- 资助国家:德国
- 起止时间:2010-12-31 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The challenge in statistical modelling of categorical variables is the high number of parameters involved. Even if the number of variables considered is only modest the number of parameters that are necessary to specify a model can be high in particular, if the investigated discrete variables have many different levels. Such high-dimensional parameter spaces cause problems when estimating the model and interpreting the results. To attack these problems, specific regularization techniques have been proposed. So far, however, these methods only work for rather simple settings with very restrictive assumptions, as (approximately) normally distributed outcomes and statistically independent observations. Since these assumptions are often violated in practice, the goal of the intended project is to generalize and extend regularization approaches for categorical covariates to make sure that these promising methods can be used in interesting applications in the applied sciences.
分类变量的统计建模的挑战是涉及大量的参数。即使考虑的变量数量不多,但如果所研究的离散变量具有许多不同的水平,则指定模型所需的参数数量可能尤其多。这种高维参数空间在估计模型和解释结果时会产生问题。为了解决这些问题,人们提出了具体的正则化技术。然而,到目前为止,这些方法只适用于具有非常严格的假设的相当简单的设置,因为(近似)正态分布的结果和统计上独立的观测。由于这些假设在实践中经常被违反,因此预期项目的目标是推广和扩展分类协变量的正则化方法,以确保这些有希望的方法可以在应用科学的有趣应用中使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Jan Gertheiss其他文献
Professor Dr. Jan Gertheiss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Jan Gertheiss', 18)}}的其他基金
Statistical Methods and Models for Interdependent Categorical, particularly Ordinal Data
相互依赖的分类数据(特别是序数数据)的统计方法和模型
- 批准号:
404505486 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
- 批准号:
2415067 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Categorical centers, cactus actions, and diagram algebras
分类中心、仙人掌动作和图代数
- 批准号:
2302664 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
- 批准号:
2247202 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
- 批准号:
23K13008 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Categorical geometry and perfect group schemes
分类几何和完美群方案
- 批准号:
FT220100125 - 财政年份:2023
- 资助金额:
-- - 项目类别:
ARC Future Fellowships
The Neural Mechanisms Underlying Categorical Decision Making
分类决策背后的神经机制
- 批准号:
10750000 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Categorical and dimensional investigations of dynamic functional connectivity and behavior during response inhibition in children with and without ADHD
患有和不患有多动症的儿童在反应抑制过程中动态功能连接和行为的分类和维度研究
- 批准号:
10606133 - 财政年份:2023
- 资助金额:
-- - 项目类别: