CAREER: Enabling Progressive Data Analytics for High Performance Computing: Algorithms and System Support
职业:实现高性能计算的渐进式数据分析:算法和系统支持
基本信息
- 批准号:2144403
- 负责人:
- 金额:$ 49.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Rapidly extracting new knowledge from simulation output is critical to the computational sciences at high performance computing (HPC) facilities across the country. However, this has become increasingly challenging due to the growing disparity between the volume of data produced by simulations and the ability to post process the data at the rate it is produced. This project aims to explore reduced representations of data with the overarching goal of achieving science aware and highly adaptable data analytics for HPC applications. The project will create new algorithms and software systems, and benefit the current and future cyberinfrastructure in the U.S. as well as numerous data intensive scientific applications, such as nuclear fusion, astrophysics, combustion, earth science, and others, thus reinforcing the competitiveness and leadership of the United States in this area. Success in the project goals will greatly reduce the time to new knowledge from scientific simulations across various science and engineering disciplines at HPC centers and significantly enhance HPC research and education. The project will contribute to society through engaging underrepresented groups and a set of integrated research and education activities.The project will develop algorithms and system support centered on the idea of leveraging multilevel data representations to enable progressive data analytics on HPC systems. The proposed work fundamentally differs from conventional lossy data compression in that it can guarantee and enforce scientific constraints and augment accuracy based upon applications needs and system state. The project has integrated research and educational activities in algorithms, systems, and applications, taking into account application requirements and architecture trends in large-scale storage to advance the field of scientific data management. More specifically, the project will make contributions in several areas: 1) constraint-based data decomposition; 2) exploiting error-controlled multilevel representations for performance optimization on HPC storage systems; 3) providing a cross-layer solution to mitigate performance variation in containerized environments, with multiprocessor and multi-application coordination achieved through a probabilistic method for selecting the number of levels to retrieve; and 4) integration and evaluation on production science applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。从仿真输出中快速提取新知识对于全国各地高性能计算(HPC)设施的计算科学至关重要。然而,由于模拟产生的数据量与以产生数据的速率对数据进行后处理的能力之间的差距越来越大,这变得越来越具有挑战性。该项目旨在探索数据的简化表示,其总体目标是为HPC应用程序实现科学感知和高度适应性的数据分析。该项目将创建新的算法和软件系统,并有利于美国当前和未来的网络基础设施以及众多数据密集型科学应用,如核聚变,天体物理学,燃烧,地球科学等,从而加强美国在这一领域的竞争力和领导地位。项目目标的成功将大大缩短HPC中心从各种科学和工程学科的科学模拟中获得新知识的时间,并显着增强HPC研究和教育。该项目将通过参与代表性不足的群体和一系列综合研究和教育活动来为社会做出贡献。该项目将开发算法和系统支持,其核心是利用多级数据表示来实现HPC系统上的渐进式数据分析。所提出的工作从根本上不同于传统的有损数据压缩,因为它可以保证和执行科学约束,并根据应用程序的需求和系统状态提高精度。该项目整合了算法,系统和应用程序的研究和教育活动,考虑到大规模存储的应用需求和架构趋势,以推进科学数据管理领域。更具体地说,该项目将在以下几个领域做出贡献:1)基于约束的数据分解; 2)利用差错控制的多级表示来优化HPC存储系统的性能; 3)提供跨层解决方案来减轻容器化环境中的性能变化,通过概率方法选择要检索的级别数来实现多处理器和多应用程序的协调; 4)生产科学应用的集成和评估。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
RAPIDS: Reconciling Availability, Accuracy, and Performance in Managing Geo-Distributed Scientific Data
RAPIDS:协调管理地理分布式科学数据的可用性、准确性和性能
- DOI:10.1145/3588195.3592983
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wan, Lipeng;Chen, Jieyang;Liang, Xin;Gainaru, Ana;Gong, Qian;Liu, Qing;Whitney, Ben;Arulraj, Joy;Liu, Zhengchun;Foster, Ian
- 通讯作者:Foster, Ian
Improving Progressive Retrieval for HPC Scientific Data using Deep Neural Network
使用深度神经网络改进 HPC 科学数据的渐进检索
- DOI:10.1109/icde55515.2023.00209
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wang, Jinzhen;Liang, Xin;Whitney, Ben;Chen, Jieyang;Gong, Qian;He, Xubin;Wan, Lipeng;Klasky, Scott;Podhorszki, Norbert;Liu, Qing
- 通讯作者:Liu, Qing
Zperf: A Statistical Gray-Box Approach to Performance Modeling and Extrapolation for Scientific Lossy Compression
Zperf:科学有损压缩性能建模和外推的统计灰盒方法
- DOI:10.1109/tc.2023.3257517
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Wang, Jinzhen;Chen, Qi;Liu, Tong;Liu, Qing;He, Xubin
- 通讯作者:He, Xubin
MGARD: A multigrid framework for high-performance, error-controlled data compression and refactoring
MGARD:用于高性能、错误控制数据压缩和重构的多重网格框架
- DOI:10.1016/j.softx.2023.101590
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Gong, Qian;Chen, Jieyang;Whitney, Ben;Liang, Xin;Reshniak, Viktor;Banerjee, Tania;Lee, Jaemoon;Rangarajan, Anand;Wan, Lipeng;Vidal, Nicolas
- 通讯作者:Vidal, Nicolas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Liu其他文献
Control Performance Characterization and Monitoring Scheme for Power Converters in Weak Grids
弱电网中功率变换器的控制性能表征和监测方案
- DOI:
10.1109/ojpel.2023.3319369 - 发表时间:
2023 - 期刊:
- 影响因子:5.8
- 作者:
Jiachen Wang;Qing Liu;Xiangchen Zeng;Weijian Han;Zhen Xin - 通讯作者:
Zhen Xin
A Diversity-Feedback-Regulated Particle Swarm Optimization for Coverage Enhancing Problem in Directional Sensor Network
定向传感器网络中覆盖增强问题的分集反馈调节粒子群优化
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Meng Tian;Qing Liu;Yaling Lu;Junliang Yao - 通讯作者:
Junliang Yao
Oncology and functional prognosis are both vital in the surgical treatment of RGCTs around the knee joint.
肿瘤学和功能预后对于膝关节周围 RGCT 的手术治疗至关重要。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2.2
- 作者:
Qing Liu;Hongbo He;Zenghui Hao;Yu;Can Zhang;W. Luo - 通讯作者:
W. Luo
The 3D Ni(II)/Cu(II) supermolecular frameworks based on pyridylamine and fumarate co-ligands containing a trinodal (4,5,6)-connected network and a (H2O)16 water cluster
基于吡啶胺和富马酸盐共配体的 3D Ni(II)/Cu(II) 超分子框架,包含三节 (4,5,6) 连接网络和 (H2O)16 水簇
- DOI:
- 发表时间:
- 期刊:
- 影响因子:5.4
- 作者:
Yifan Kang;Qing Liu;Wenting Yin;Wentao Zhang;Ping Liu - 通讯作者:
Ping Liu
Anisotropic functional deconvolution with long-memory noise: the case of a multi-parameter fractional Wiener sheet
具有长记忆噪声的各向异性函数反卷积:多参数分数维纳片的情况
- DOI:
10.1080/10485252.2019.1604953 - 发表时间:
2018 - 期刊:
- 影响因子:1.2
- 作者:
Rida Benhaddou;Qing Liu - 通讯作者:
Qing Liu
Qing Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qing Liu', 18)}}的其他基金
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
- 批准号:
2311757 - 财政年份:2023
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Rethinking Performance Variation for Emerging Applications - An Application-centric and Cross-layer Approach
协作研究:SHF:小型:重新思考新兴应用程序的性能变化 - 以应用程序为中心的跨层方法
- 批准号:
2134202 - 财政年份:2022
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
SHF:Small: Collaborative Research: Understanding, Modeling, and System Support for HPC Data Reduction
SHF:Small:协作研究:HPC 数据缩减的理解、建模和系统支持
- 批准号:
1812861 - 财政年份:2018
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
SHF:Small: Collaborative Research: Tailoring Memory Systems for Data-Intensive HPC Applications
SHF:Small:协作研究:为数据密集型 HPC 应用定制内存系统
- 批准号:
1718297 - 财政年份:2017
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
STTR Phase I: A novel biomimetic nanofiber coating on dental implants for gingival regeneration
STTR 第一阶段:用于牙龈再生的牙种植体上的新型仿生纳米纤维涂层
- 批准号:
1346430 - 财政年份:2014
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
相似海外基金
Enabling a circular economy for poultry via exploration of metabolism
通过探索新陈代谢实现家禽循环经济
- 批准号:
DE240100802 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Discovery Early Career Researcher Award
International Centre-to-Centre Collaboration: New catalysts for acetylene processes enabling a sustainable future
国际中心间合作:乙炔工艺的新型催化剂实现可持续的未来
- 批准号:
EP/Z531285/1 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Research Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
- 批准号:
NE/X005003/1 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Research Grant
Enabling Reliable Testing Of SMLM Datasets
实现 SMLM 数据集的可靠测试
- 批准号:
BB/X01858X/1 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Research Grant
Enabling precision engineering of complex chemical products for high value technology sectors.
为高价值技术领域实现复杂化学产品的精密工程。
- 批准号:
EP/X040992/1 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Research Grant
CAREER: A cortex-basal forebrain loop enabling task-specific cognitive behavior
职业:皮层基底前脑环路实现特定任务的认知行为
- 批准号:
2337351 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Continuing Grant
FMRG: Bio: Enabling Technologies for Biomanufacturing Extracellular Vesicle-Based Therapeutics
FMRG:生物:基于细胞外囊泡的生物制造治疗的使能技术
- 批准号:
2328276 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Continuing Grant
CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
- 批准号:
2339469 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Continuing Grant
CAREER: Elastic Intermittent Computation Enabling Batteryless Edge Intelligence
职业:弹性间歇计算实现无电池边缘智能
- 批准号:
2339193 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Continuing Grant