Efficient, accurate and rapidly convergent algorithms for solutions of wave propagation problems in configurations complex material and geometrical features

高效、准确且快速收敛的算法,用于解决复杂材料和几何特征结构中的波传播问题

基本信息

  • 批准号:
    1251859
  • 负责人:
  • 金额:
    $ 4.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-30 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

TurcDMS-1008076 The investigator develops efficient, accurate and rapidlyconvergent algorithms for evaluation of the interaction betweenelectromagnetic fields and complex structures. Specifically, theinvestigator and his collaborators develop a family of algorithmsthat focus mainly on (1) Fast, high-order numerical solutions forwave-propagation problems in domains that contain geometricsingularities, and (2) Scattering problems from penetrableelectromagnetic periodic structures, with a particular emphasison resonant problems relevant to the design of photonic crystalsand Negative Index Materials (NIM). The investigatorconcentrates on development and implementation of a massivelyparallel computational framework based on integral equationformulations capable of producing fast and high-order solutionsof wave scattering problems of realistic complexity. Theapproach consists of the following main elements: (a) High-orderresolution of the singularities of the solutions of the boundaryintegral equations in non-smooth domains; (b)Pseudodifferential-calculus-based design and analysis ofwell-conditioned integral equation formulations leading to smallnumbers of Krylov-subspace iterations for a wide range ofelectromagnetic transmission problems; and (c) Use of equivalentsources, FFT-based acceleration algorithms, and implementationsthat take advantage of the newly available Graphic ProcessingUnits (GPUs) computational platforms to dramatically enhancecomputational times and capabilities. The algorithms that are developed as part of this projectare of fundamental significance to diverse applications such aselectromagnetic interference and compatibility (electroniccircuits), dielectric/magnetic coated conductors, and compositemeta-materials (photonic crystals and Negative Index Materials). The simulation of electromagnetic wave propagation in complexstructures gives rise to a host of significant computationalchallenges that result from non-coercive formulations,oscillatory solutions, geometric singularities, resonances, andill-conditioning in the high-frequency regime. The recentefforts of the investigator and his collaborators resulted in thedevelopment of a highly efficient computational methodology thatresolved several of these difficulties and whose extensionenables the fulfillment of an ambitious plan: to simulate withhigh fidelity realistic scattering environments with a highdynamic range.
TurcDMS-1008076 研究人员开发了高效,准确和快速收敛的算法,用于评估电磁场和复杂结构之间的相互作用。 具体来说,研究者和他的合作者开发了一系列算法,主要集中在(1)快速,高阶数值解的波传播问题的域,包含几何奇点,(2)散射问题从可穿透的电磁周期性结构,特别强调共振问题相关的光子晶体和负折射率材料(NIM)的设计。 该软件集中于开发和实现一个基于积分方程公式的并行计算框架,能够产生现实复杂性的波散射问题的快速和高阶解。 该方法包括以下主要内容:(a)非光滑区域中边界积分方程解的奇异性的高阶解析:(B)基于伪微分的良好条件积分方程公式的设计和分析,导致大量电磁传输问题的少量Krylov子空间迭代;以及(c)使用等效源、基于FFT的加速算法以及利用最新可用的图形处理单元(GPU)计算平台的实现,以显著提高计算时间和能力。 作为该项目的一部分开发的算法对各种应用具有根本意义,例如电磁干扰和兼容性(电子电路),介电/磁性涂层导体和复合超材料(光子晶体和负折射率材料)。电磁波在复杂结构中传播的模拟产生了一系列重大的计算挑战,这些挑战来自于非强制性公式、振荡解、几何奇点、共振、高频区的条件反射。 最近的研究人员和他的合作者导致了一个高效的计算方法的发展,解决了这些困难中的几个,其扩展使一个雄心勃勃的计划得以实现:以高保真逼真的散射环境模拟高动态范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Catalin Turc其他文献

Boundary integral equation methods for the solution of scattering and transmission 2D elastodynamic problems
求解散射和透射二维弹性动力学问题的边界积分方程方法

Catalin Turc的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Catalin Turc', 18)}}的其他基金

Optimized Domain Decomposition Methods for Wave Propagation in Complex Media
复杂介质中波传播的优化域分解方法
  • 批准号:
    1908602
  • 财政年份:
    2019
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Continuing Grant
Efficient solutions of wave propagation problems in multi-layered, multiple scattering media
多层、多重散射介质中波传播问题的有效解决方案
  • 批准号:
    1614270
  • 财政年份:
    2016
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Standard Grant
Efficient integral equation solvers for large-scale frequency domain electromagnetic scattering problems
用于大规模频域电磁散射问题的高效积分方程求解器
  • 批准号:
    1312169
  • 财政年份:
    2013
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Continuing Grant
Efficient, accurate and rapidly convergent algorithms for solutions of wave propagation problems in configurations complex material and geometrical features
高效、准确且快速收敛的算法,用于解决复杂材料和几何特征结构中的波传播问题
  • 批准号:
    1008076
  • 财政年份:
    2010
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Standard Grant

相似国自然基金

非定常复杂流场的时空高精度高效率新格式的研究
  • 批准号:
    50376004
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The challenge of scaling methane fluxes in mangrove and mountain forests for an accurate methane budget
缩放红树林和山地森林甲烷通量以获得准确的甲烷预算的挑战
  • 批准号:
    24K01797
  • 财政年份:
    2024
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Adapting Position-Based Dynamics as a Biophysically Accurate and Efficient Modeling Framework for Dynamic Cell Shapes
采用基于位置的动力学作为动态细胞形状的生物物理准确且高效的建模框架
  • 批准号:
    24K16962
  • 财政年份:
    2024
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
"Mimicking Human Head Sound Responses": Towards an Anatomically Accurate Head Prototype for Bone Conduction Crosstalk Cancellation Analysis with Humans
“模仿人类头部声音反应”:构建解剖学上准确的头部原型,用于人类骨传导串扰消除分析
  • 批准号:
    24K20786
  • 财政年份:
    2024
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Research Grant
Developing an accurate non-Newtonian surface rheology model
开发精确的非牛顿表面流变模型
  • 批准号:
    EP/Y031644/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Research Grant
Accurate analysis of PTM enzymes with an mRNA display/deep learning platform
利用 mRNA 显示/深度学习平台准确分析 PTM 酶
  • 批准号:
    23K23485
  • 财政年份:
    2024
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Framework for Fast, Accurate, and Explainable Computerized Adaptive Language Test
快速、准确且可解释的计算机化自适应语言测试框架
  • 批准号:
    24K20903
  • 财政年份:
    2024
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
  • 批准号:
    2421137
  • 财政年份:
    2024
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Continuing Grant
CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
  • 批准号:
    2339868
  • 财政年份:
    2024
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了