Efficient solutions of wave propagation problems in multi-layered, multiple scattering media
多层、多重散射介质中波传播问题的有效解决方案
基本信息
- 批准号:1614270
- 负责人:
- 金额:$ 23.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports a continuation of the research program of the Principal Investigator on the accurate and efficient numerical modeling of wave-scattering problems in various applications settings. In this project, the Principal Investigator will develop and analyze high-performance, efficient, accurate, and rapidly-convergent algorithms for evaluation of the interaction between waves and structures that involve multiple scatterers as well as multiple layers with different material properties. The solvers to be developed are relevant to diverse applications, such as radar and remote sensing, communication devices, geophysics, and photonics.The Principal Investigator will develop a family of algorithms that will focus mainly on (1) efficient boundary integral solutions of electromagnetic and elastic scattering problems in layered media that bypass the need for cripplingly expensive evaluations of layered Green's functions and (2) Schur complement Domain Decomposition methods for efficient solutions of multiple scattering problems. The computational methodology underlying the proposed work is based on a class of numerical solvers and surface-representation and meshing methodologies developed in recent years by the Principal Investigator and his collaborators. These are boundary integral solvers that can produce solutions with high-order accuracy, and no numerical dispersion, for realistic engineering geometries including features such as full aircraft, complex photonic or electronic devices, etc. In practice, and whenever applicable, these types of solvers have demonstrated order-of-magnitude faster numerics, for a given accuracy, than some of the most competitive solvers otherwise available: the new methods can enable solution of previously intractable problems.
该奖项支持首席研究员在各种应用环境中准确有效地数值建模波散射问题的研究计划的继续。 在这个项目中,主要研究者将开发和分析高性能,高效,准确和快速收敛的算法,用于评估波和结构之间的相互作用,涉及多个散射体以及具有不同材料特性的多层。 要开发的求解器与不同的应用有关,例如雷达和遥感、通信设备、电子物理学,首席研究员将开发一系列算法,主要集中在(1)分层介质中电磁和弹性散射问题的有效边界积分解决方案,绕过了对分层绿色函数的昂贵评估,以及(2)Schur互补区域分解法求解多重散射问题。 计算方法的基础上提出的工作是基于一类的数值求解器和表面表示和网格化方法,近年来开发的主要研究者和他的合作者。 这些是边界积分求解器,可以产生具有高阶精度的解决方案,并且没有数值色散,用于现实的工程几何形状,包括完整的飞机,复杂的光子或电子设备等。在实践中,只要适用,这些类型的求解器已经证明了数量级更快的数值,对于给定的精度,比一些最具竞争力的求解器,否则可用:这些新方法能够解决以前难以解决的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catalin Turc其他文献
Boundary integral equation methods for the solution of scattering and transmission 2D elastodynamic problems
求解散射和透射二维弹性动力学问题的边界积分方程方法
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.2
- 作者:
Victor Dominguez;Catalin Turc - 通讯作者:
Catalin Turc
Catalin Turc的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catalin Turc', 18)}}的其他基金
Optimized Domain Decomposition Methods for Wave Propagation in Complex Media
复杂介质中波传播的优化域分解方法
- 批准号:
1908602 - 财政年份:2019
- 资助金额:
$ 23.63万 - 项目类别:
Continuing Grant
Efficient integral equation solvers for large-scale frequency domain electromagnetic scattering problems
用于大规模频域电磁散射问题的高效积分方程求解器
- 批准号:
1312169 - 财政年份:2013
- 资助金额:
$ 23.63万 - 项目类别:
Continuing Grant
Efficient, accurate and rapidly convergent algorithms for solutions of wave propagation problems in configurations complex material and geometrical features
高效、准确且快速收敛的算法,用于解决复杂材料和几何特征结构中的波传播问题
- 批准号:
1251859 - 财政年份:2012
- 资助金额:
$ 23.63万 - 项目类别:
Standard Grant
Efficient, accurate and rapidly convergent algorithms for solutions of wave propagation problems in configurations complex material and geometrical features
高效、准确且快速收敛的算法,用于解决复杂材料和几何特征结构中的波传播问题
- 批准号:
1008076 - 财政年份:2010
- 资助金额:
$ 23.63万 - 项目类别:
Standard Grant
相似国自然基金
无穷维哈密顿系统的KAM理论
- 批准号:10771098
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
- 批准号:
2306258 - 财政年份:2023
- 资助金额:
$ 23.63万 - 项目类别:
Standard Grant
Regularity and Stability for Solutions of Quasilinear Wave Equations with Singularities
具有奇异性的拟线性波动方程解的正则性和稳定性
- 批准号:
2206218 - 财政年份:2022
- 资助金额:
$ 23.63万 - 项目类别:
Continuing Grant
Costruction of solutions to Schrödinger equations via wave packet transform and its application
Schr 解决方案的构建
- 批准号:
22K03394 - 财政年份:2022
- 资助金额:
$ 23.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Using Monte Carlo Methods to Examine Solutions to Water Wave Problems
使用蒙特卡罗方法检查水波问题的解决方案
- 批准号:
574653-2022 - 财政年份:2022
- 资助金额:
$ 23.63万 - 项目类别:
University Undergraduate Student Research Awards
Exploration of nonlinear solutions dicribing wave turbulence using regularization
使用正则化描述波湍流的非线性解的探索
- 批准号:
22K03897 - 财政年份:2022
- 资助金额:
$ 23.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Global solutions to the Cauchy problem for systems of quasi-linear wave equations satisfying the weak null condition
满足弱零条件的拟线性波动方程组柯西问题的全局解
- 批准号:
21K03324 - 财政年份:2021
- 资助金额:
$ 23.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Detailed Viscoelastic Analysis for Semidilute Entangled Solutions of Polyelectrolytes Using Diffusing Wave Spectroscopy
使用扩散波谱对聚电解质的半稀缠结溶液进行详细的粘弹性分析
- 批准号:
21K14686 - 财政年份:2021
- 资助金额:
$ 23.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Transient solutions of internal wave equations
内波动方程的瞬态解
- 批准号:
556473-2020 - 财政年份:2020
- 资助金额:
$ 23.63万 - 项目类别:
University Undergraduate Student Research Awards
Large solutions for systems of hyperbolic conservation laws and wave equations in one and multiple space dimensions
一维和多维空间双曲守恒定律和波动方程组的大解
- 批准号:
2008504 - 财政年份:2020
- 资助金额:
$ 23.63万 - 项目类别:
Standard Grant
Challenges to unexplored fields of research on the Cauchy problem for systems of quasi-linear wave equations--large-time behavior and regularity of solutions--
拟线性波动方程组柯西问题的未探索领域研究面临的挑战——解的大时间行为和规律性——
- 批准号:
18K03365 - 财政年份:2018
- 资助金额:
$ 23.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




