CAREER: The Algorithmic Foundations of Data Privacy
职业:数据隐私的算法基础
基本信息
- 批准号:1253345
- 负责人:
- 金额:$ 48.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The past decade has seen a growing reliance on data driven technologies, including recommendation systems, targeted advertising, and search personalization. This growth in big data has made data privacy into a central concern. The central question raised is: how can we continue to extract useful information from large datasets, while provably protecting some measure of privacy for the individuals contained in these datasets?This research centers around advancing the state of the art in privacy preserving data analysis. It specifically has several themes: (1) Exploiting structure in the private data being analyzed, as well as the classes of queries used in the analysis to give computationally efficient algorithms for private data analysis. (2) Deepening the connections between private data analysis and machine learning theory. (3) Relaxing the adversarial collusion model implicit in most work on the foundations of data privacy, and (4) applying the tools of differential privacy to usefully exploit and analyze noise in other algorithmic settings. To ensure the broad impact of this research, this project includes substantial outreach activities, including workshop organization, course development, and the development of a textbook and other educational materials.
在过去的十年中,人们越来越依赖数据驱动的技术,包括推荐系统、定向广告和搜索个性化。大数据的增长使数据隐私成为一个核心问题。提出的核心问题是:我们如何继续从大型数据集中提取有用的信息,同时可证明地保护这些数据集中包含的个人的某种程度的隐私?这项研究的中心是推进隐私保护数据分析的最新技术。它具体有几个主题:(1)利用被分析的私有数据中的结构,以及分析中使用的查询类,为私有数据分析提供计算效率高的算法。(2)深化私有数据分析与机器学习理论之间的联系。(3)放松大多数工作中隐含的对抗性共谋模型,以数据隐私为基础,(4)应用差分隐私工具来有效地利用和分析其他算法设置中的噪声。为了确保这项研究产生广泛影响,该项目包括大量的外联活动,包括组织讲习班、编制课程、编写教科书和其他教育材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AARON ROTH其他文献
AARON ROTH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AARON ROTH', 18)}}的其他基金
FAI: Breaking the Tradeoff Barrier in Algorithmic Fairness
FAI:打破算法公平性的权衡障碍
- 批准号:
2147212 - 财政年份:2022
- 资助金额:
$ 48.42万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Foundations of Fair Data Analysis
AF:媒介:协作研究:公平数据分析的基础
- 批准号:
1763307 - 财政年份:2018
- 资助金额:
$ 48.42万 - 项目类别:
Continuing Grant
AF: MEDIUM: Collaborative Research: Foundations of Adaptive Data Analysis
AF:中:协作研究:自适应数据分析的基础
- 批准号:
1763314 - 财政年份:2018
- 资助金额:
$ 48.42万 - 项目类别:
Continuing Grant
TWC: Medium: Distributed Differential Privacy
TWC:媒介:分布式差异隐私
- 批准号:
1513694 - 财政年份:2015
- 资助金额:
$ 48.42万 - 项目类别:
Standard Grant
ICES: Large: Economic Foundations of Digital Privacy
ICES:大:数字隐私的经济基础
- 批准号:
1101389 - 财政年份:2011
- 资助金额:
$ 48.42万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Socio-Algorithmic Foundations of Trustworthy Recommendations
职业:值得信赖的推荐的社会算法基础
- 批准号:
2239194 - 财政年份:2023
- 资助金额:
$ 48.42万 - 项目类别:
Continuing Grant
CAREER: Algorithmic foundations for practical acceleration in computational sciences
职业:计算科学实践加速的算法基础
- 批准号:
2145629 - 财政年份:2022
- 资助金额:
$ 48.42万 - 项目类别:
Continuing Grant
CAREER: Algorithmic Foundations for Demand-Responsive Transit Systems - Creating More Equitable and Sustainable Cities through Better Transit
职业:需求响应型交通系统的算法基础 - 通过更好的交通创建更加公平和可持续的城市
- 批准号:
2144127 - 财政年份:2022
- 资助金额:
$ 48.42万 - 项目类别:
Continuing Grant
CAREER: AF: New Algorithmic Foundations for Fair Division through Competitive Equilibrium
职业:AF:通过竞争均衡实现公平分配的新算法基础
- 批准号:
1942321 - 财政年份:2020
- 资助金额:
$ 48.42万 - 项目类别:
Continuing Grant
CAREER: New Algorithmic Foundations for Online Scheduling
职业:在线调度的新算法基础
- 批准号:
1844939 - 财政年份:2019
- 资助金额:
$ 48.42万 - 项目类别:
Continuing Grant
CAREER: Algorithmic Foundations and Modern Applications for Program Synthesis
职业:程序综合的算法基础和现代应用
- 批准号:
1652140 - 财政年份:2017
- 资助金额:
$ 48.42万 - 项目类别:
Continuing Grant
CAREER: Massive Uniform Manipulation: Algorithmic and Control Theoretic Foundations for Large Populations of Simple Robots Controlled by Uniform Inputs
职业:大规模均匀操纵:均匀输入控制的大量简单机器人的算法和控制理论基础
- 批准号:
1553063 - 财政年份:2016
- 资助金额:
$ 48.42万 - 项目类别:
Continuing Grant
Doctoral Student Career Development at the Workshop on the Algorithmic Foundations of Robotics (WAFR)
机器人算法基础研讨会(WAFR)上的博士生职业发展
- 批准号:
1648643 - 财政年份:2016
- 资助金额:
$ 48.42万 - 项目类别:
Standard Grant
CAREER: Algorithmic Foundations for Social Data
职业:社交数据的算法基础
- 批准号:
1452961 - 财政年份:2015
- 资助金额:
$ 48.42万 - 项目类别:
Continuing Grant
CAREER: Algorithmic and Software Foundations for Large-Scale Graph Analysis
职业:大规模图形分析的算法和软件基础
- 批准号:
1253881 - 财政年份:2013
- 资助金额:
$ 48.42万 - 项目类别:
Standard Grant