CAREER: Algorithmic Foundations and Modern Applications for Program Synthesis
职业:程序综合的算法基础和现代应用
基本信息
- 批准号:1652140
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Almost every aspect of our world has been touched by automation through software systems. Being able to efficiently construct complex software provides a competitive advantage to businesses, streamlines our bureaucratic systems, and improves our personal day-to-day lives. But building software remains a cumbersome, error-prone process. This project simplifies the software development process through techniques that automatically synthesize desired programs. At a foundational level, the project develops modern algorithmic techniques for efficiently and automatically constructing software systems, thus advancing the field of program synthesis. The particular emphasis of this project is on automated synthesis of data-analysis applications. Specifically, the project develops tools for end users to automatically construct data analyses that can run on cloud infrastructure, without any necessary knowledge of programming systems. Thus, the project has the potential to revolutionize and democratize data analytics. The project strongly connects research with education and outreach: by involving women and underrepresented minority undergraduate students in research, incorporating program synthesis ideas in modern curricula, and developing inclusive synthesis-themed hackathons.This project expands the range of program synthesis applications to data-parallel programs that can run on cloud infrastructure. To enable efficient synthesis, the project contributes a portfolio of novel algorithmic techniques. Specifically, the project (1) develops and utilizes the notion of relational specifications to guide synthesis algorithms with semantic knowledge; (2) develops techniques for learning relational specifications of arbitrary APIs; and (3) develops a suite of techniques for efficiently synthesizing programs that are deterministic in the presence of reorderings.
通过软件系统实现自动化几乎触及了我们世界的方方面面。能够高效地构建复杂的软件为企业提供了竞争优势,简化了我们的官僚系统,并改善了我们的个人日常生活。但构建软件仍然是一个繁琐、容易出错的过程。该项目通过自动合成所需程序的技术简化了软件开发过程。在基础层面上,该项目开发了用于高效和自动构建软件系统的现代算法技术,从而推动了程序综合领域的发展。该项目的重点是数据分析应用程序的自动合成。具体地说,该项目为最终用户开发工具,以自动构建可在云基础设施上运行的数据分析,而无需任何必要的编程系统知识。因此,该项目有可能使数据分析发生革命性变化并使之大众化。该项目将研究与教育和外联紧密联系在一起:让女性和代表不足的少数族裔本科生参与研究,在现代课程中融入程序合成想法,并开发包容性合成主题黑客松。该项目将程序合成应用程序的范围扩展到可以在云基础设施上运行的数据并行程序。为了实现高效的合成,该项目贡献了一系列新颖的算法技术。具体地说,该项目(1)开发并利用关系规范的概念来指导具有语义知识的合成算法;(2)开发用于学习任意API的关系规范的技术;以及(3)开发一套在存在重新排序的情况下高效地合成确定性程序的技术。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proving data-poisoning robustness in decision trees
- DOI:10.1145/3385412.3385975
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Samuel Drews;Aws Albarghouthi;Loris D'antoni
- 通讯作者:Samuel Drews;Aws Albarghouthi;Loris D'antoni
Semantic Robustness of Models of Source Code
- DOI:10.1109/saner53432.2022.00070
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Goutham Ramakrishnan;Jordan Henkel;Zi Wang;Aws Albarghouthi;S. Jha;T. Reps
- 通讯作者:Goutham Ramakrishnan;Jordan Henkel;Zi Wang;Aws Albarghouthi;S. Jha;T. Reps
Synthesizing Action Sequences for Modifying Model Decisions
综合修改模型决策的动作序列
- DOI:10.1609/aaai.v34i04.5996
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ramakrishnan, Goutham;Lee, Yun Chan;Albarghouthi, Aws
- 通讯作者:Albarghouthi, Aws
Generating Programmatic Referring Expressions via Program Synthesis
通过程序合成生成程序引用表达式
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Huang, Jiani;Smith, Calvin;Bastani, Osbert;Singh, Rishabh;Albarghouthi, Aws;Naik, Mayur
- 通讯作者:Naik, Mayur
Learning Differentially Private Mechanisms
- DOI:10.1109/sp40001.2021.00060
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Subhajit Roy;Justin Hsu;Aws Albarghouthi
- 通讯作者:Subhajit Roy;Justin Hsu;Aws Albarghouthi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aws Albarghouthi其他文献
Automated tuning of query degree of parallelism via machine learning
通过机器学习自动调整查询并行度
- DOI:
10.1145/3401071.3401656 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Zhiwei Fan;Rathijit Sen;Paraschos Koutris;Aws Albarghouthi - 通讯作者:
Aws Albarghouthi
Effectively Propositional Interpolants
有效命题插值
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Samuel Drews;Aws Albarghouthi - 通讯作者:
Aws Albarghouthi
Fairness as a Program Property
公平作为计划财产
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Aws Albarghouthi;Loris D'antoni;Samuel Drews;A. Nori - 通讯作者:
A. Nori
Fairness: A Formal-Methods Perspective
公平性:形式方法的视角
- DOI:
10.1007/978-3-319-99725-4_1 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Aws Albarghouthi - 通讯作者:
Aws Albarghouthi
Certifying Data-Bias Robustness in Linear Regression
证明线性回归中的数据偏差稳健性
- DOI:
10.48550/arxiv.2206.03575 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Anna P. Meyer;Aws Albarghouthi;Loris D'antoni - 通讯作者:
Loris D'antoni
Aws Albarghouthi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aws Albarghouthi', 18)}}的其他基金
SHF: FET: Medium: Designing and Synthesizing a Quantum Circuit Compiler
SHF:FET:中:设计和综合量子电路编译器
- 批准号:
2212232 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Medium: Program Synthesis for Weak Supervision
SHF:中:弱监督的程序综合
- 批准号:
2106707 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Medium: Formal Methods for Program Fairness
SHF:媒介:程序公平性的形式化方法
- 批准号:
1704117 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CRII: SHF: Optimal Interpolation for Efficient Proof Synthesis
CRII:SHF:高效证明合成的最佳插值
- 批准号:
1566015 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Socio-Algorithmic Foundations of Trustworthy Recommendations
职业:值得信赖的推荐的社会算法基础
- 批准号:
2239194 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Algorithmic foundations for practical acceleration in computational sciences
职业:计算科学实践加速的算法基础
- 批准号:
2145629 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Algorithmic Foundations for Demand-Responsive Transit Systems - Creating More Equitable and Sustainable Cities through Better Transit
职业:需求响应型交通系统的算法基础 - 通过更好的交通创建更加公平和可持续的城市
- 批准号:
2144127 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: AF: New Algorithmic Foundations for Fair Division through Competitive Equilibrium
职业:AF:通过竞争均衡实现公平分配的新算法基础
- 批准号:
1942321 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: New Algorithmic Foundations for Online Scheduling
职业:在线调度的新算法基础
- 批准号:
1844939 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Massive Uniform Manipulation: Algorithmic and Control Theoretic Foundations for Large Populations of Simple Robots Controlled by Uniform Inputs
职业:大规模均匀操纵:均匀输入控制的大量简单机器人的算法和控制理论基础
- 批准号:
1553063 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Doctoral Student Career Development at the Workshop on the Algorithmic Foundations of Robotics (WAFR)
机器人算法基础研讨会(WAFR)上的博士生职业发展
- 批准号:
1648643 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Algorithmic Foundations for Social Data
职业:社交数据的算法基础
- 批准号:
1452961 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: The Algorithmic Foundations of Data Privacy
职业:数据隐私的算法基础
- 批准号:
1253345 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Algorithmic and Software Foundations for Large-Scale Graph Analysis
职业:大规模图形分析的算法和软件基础
- 批准号:
1253881 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant