CAREER: Algorithmic foundations for practical acceleration in computational sciences
职业:计算科学实践加速的算法基础
基本信息
- 批准号:2145629
- 负责人:
- 金额:$ 65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-convex optimization lies at the heart of many engineering applications with far-reaching societal impacts, especially through the wave that machine learning/artificial intelligence triggers: physics, healthcare, biology, software engineering, chemistry and materials science, among other areas. However, given the lack of theory, practitioners often simply follow trial-and-error procedures, leading to heuristics. Characterizing when heuristics turn out to be provable algorithms is one pressing need for the scientific community, and indeed society as a whole. The goal of the proposal is to build algorithmic foundations, along with theory, that accelerate problem solving in such scenarios. This constitutes the design of fast algorithms as an active research area in machine learning, information processing, and optimization research. Understanding how remarkable performance is obtained using efficient algorithms is of ultimate significance towards practical and safely applicable learning. The difficulty/risk of this research lies exactly in the non-convex nature of the tasks, where existing knowledge does not lead to a deeper understanding.The aim is to provide methodologies that perform faster and better in practical settings, as well as introduce theory that justifies their performance. Given the difficulty and diversity of the task, the PI will focus on three research areas: i) faster convergence in structure-rich problems, with a special focus on matrix-factorized machine learning problems; ii) algorithmic acceleration in more general non-convex scenarios, with a special focus on (shallow) neural network architectures; and iii) acceleration techniques in modern ML systems, such as pruning techniques, distributed protocols and hyperparameter tuning. The objectives mentioned above complement each other: their combination results in a unified mathematical framework that will provide insights on why and how several non-convex tools work in ML and optimization research. The PI will study and analyze algorithms with applications in text analytics, image classification, and practical hard combinatorial problems, among others. The proposed research will analyze ideas beyond classical momentum in non-convex scenarios, such as algorithmic implicit regularization, hyper-parameter tuning, deep matrix factorization, proximal point algorithms and robustness, and lottery-ticket hypotheses, just to name a few. The long-term goal is the rigorous characterization of practical methods in non-convex settings, with the hope that they could potentially turn into a technology for designing faster and better algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非凸优化是许多工程应用的核心,具有深远的社会影响,特别是通过机器学习/人工智能触发的浪潮:物理学,医疗保健,生物学,软件工程,化学和材料科学等领域。然而,由于缺乏理论,实践者往往只是简单地遵循试错程序,导致错误。科学界乃至整个社会都迫切需要描述算法何时成为可证明的算法。该提案的目标是建立算法基础,沿着理论,加速在这种情况下解决问题。这构成了快速算法的设计,作为机器学习,信息处理和优化研究中的一个活跃的研究领域。了解如何使用有效的算法获得显着的性能是对实际和安全适用的学习的最终意义。这项研究的困难/风险恰恰在于任务的非凸性,现有的知识并不能导致更深入的理解。其目的是提供在实际环境中执行更快,更好的方法,以及引入理论来证明其性能。鉴于任务的难度和多样性,PI将专注于三个研究领域:i)结构丰富问题的更快收敛,特别关注矩阵分解机器学习问题; ii)更一般非凸场景中的算法加速,特别关注(浅层)神经网络架构;以及iii)现代ML系统中的加速技术,例如修剪技术、分布式协议和超参数调整。上述目标相互补充:它们的组合产生了一个统一的数学框架,这将为ML和优化研究中几个非凸工具的工作原理和方式提供见解。PI将研究和分析算法,应用于文本分析,图像分类和实际困难的组合问题等。拟议的研究将分析非凸场景中超越经典动量的想法,例如算法隐式正则化,超参数调整,深度矩阵分解,近点算法和鲁棒性,以及彩票假设,仅举几例。长期目标是对非凸环境中的实用方法进行严格的表征,希望它们能够成为设计更快、更好算法的技术。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anastasios Kyrillidis其他文献
Randomized Low-Memory Singular Value Projection
随机低内存奇异值投影
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Stephen Becker;V. Cevher;Anastasios Kyrillidis - 通讯作者:
Anastasios Kyrillidis
An Inexact Proximal Path-Following Algorithm for Constrained Convex Minimization
约束凸极小化的不精确近端路径跟踪算法
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:3.1
- 作者:
Quoc Tran;Anastasios Kyrillidis;V. Cevher - 通讯作者:
V. Cevher
Bayesian Coresets: Revisiting the Nonconvex Optimization Perspective
贝叶斯核心集:重新审视非凸优化视角
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jacky Y. Zhang;Rekha Khanna;Anastasios Kyrillidis;Oluwasanmi Koyejo - 通讯作者:
Oluwasanmi Koyejo
Data- and theory-guided learning of partial differential equations using SimultaNeous basis function Approximation and Parameter Estimation (strongSNAPE/strong)
使用同时基函数逼近和参数估计(strongSNAPE/strong)的数据和理论指导的偏微分方程学习
- DOI:
10.1016/j.ymssp.2022.110059 - 发表时间:
2023-04-15 - 期刊:
- 影响因子:8.900
- 作者:
Sutanu Bhowmick;Satish Nagarajaiah;Anastasios Kyrillidis - 通讯作者:
Anastasios Kyrillidis
A Catalyst Framework for the Quantum Linear System Problem via the Proximal Point Algorithm
通过近点算法解决量子线性系统问题的催化剂框架
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
J. Kim;Nai;Anastasios Kyrillidis - 通讯作者:
Anastasios Kyrillidis
Anastasios Kyrillidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anastasios Kyrillidis', 18)}}的其他基金
FET: Small: Collaborative Research: Efficient and Robust Characterization of Quantum Systems
FET:小型:协作研究:量子系统的高效且稳健的表征
- 批准号:
1907936 - 财政年份:2019
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Socio-Algorithmic Foundations of Trustworthy Recommendations
职业:值得信赖的推荐的社会算法基础
- 批准号:
2239194 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
CAREER: Algorithmic Foundations for Demand-Responsive Transit Systems - Creating More Equitable and Sustainable Cities through Better Transit
职业:需求响应型交通系统的算法基础 - 通过更好的交通创建更加公平和可持续的城市
- 批准号:
2144127 - 财政年份:2022
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
CAREER: AF: New Algorithmic Foundations for Fair Division through Competitive Equilibrium
职业:AF:通过竞争均衡实现公平分配的新算法基础
- 批准号:
1942321 - 财政年份:2020
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
CAREER: New Algorithmic Foundations for Online Scheduling
职业:在线调度的新算法基础
- 批准号:
1844939 - 财政年份:2019
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
CAREER: Algorithmic Foundations and Modern Applications for Program Synthesis
职业:程序综合的算法基础和现代应用
- 批准号:
1652140 - 财政年份:2017
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
CAREER: Massive Uniform Manipulation: Algorithmic and Control Theoretic Foundations for Large Populations of Simple Robots Controlled by Uniform Inputs
职业:大规模均匀操纵:均匀输入控制的大量简单机器人的算法和控制理论基础
- 批准号:
1553063 - 财政年份:2016
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
Doctoral Student Career Development at the Workshop on the Algorithmic Foundations of Robotics (WAFR)
机器人算法基础研讨会(WAFR)上的博士生职业发展
- 批准号:
1648643 - 财政年份:2016
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
CAREER: Algorithmic Foundations for Social Data
职业:社交数据的算法基础
- 批准号:
1452961 - 财政年份:2015
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
CAREER: The Algorithmic Foundations of Data Privacy
职业:数据隐私的算法基础
- 批准号:
1253345 - 财政年份:2013
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
CAREER: Algorithmic and Software Foundations for Large-Scale Graph Analysis
职业:大规模图形分析的算法和软件基础
- 批准号:
1253881 - 财政年份:2013
- 资助金额:
$ 65万 - 项目类别:
Standard Grant