CAREER: Algorithmic Foundations for Social Data
职业:社交数据的算法基础
基本信息
- 批准号:1452961
- 负责人:
- 金额:$ 51.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the past several years, there has been a great deal of exposure to the opportunities and promise that lie in large-scale data. Although massive data sets have been collected and analyzed in well over a decade, the excitement is largely due to the relatively recent availability of social data: massive digital records of human interactions. This provides a unique system-wide perspective of collective human behavior which poses fundamental challenges and opportunities. Despite the tremendous progress made in recent years, very few algorithmic frameworks to-date have been purposefully developed for analyzing social data sets. The goal of this project is to develop frameworks that enable analysis of large-scale social data. This project seeks novel models that are rich in problems, raise deep questions about computation, and can lead to long-lasting impact on sociology and data science. From a technical perspective, the goal of the project is to develop appropriate algorithmic machinery with strong theoretical guarantees that translate to results in practice. The project consists of three main lines of research. The first line of research seeks to develop a theory to optimize events in the future given a distribution on the consequences of actions we take in the present. The second line of research considers learnability and scalability of social data, and its interpretation for optimization. The third line of research considers design of robust optimization algorithms for noisy data. The methodology includes experimentation on real data sets to develop appropriate algorithmic machinery with strong theoretical guarantees that translate to results in practice. Both undergraduate and graduate curriculum will benefit from the development of courses in this interdisciplinary area.
在过去的几年里,人们大量接触到大规模数据中蕴含的机遇和前景。尽管十多年来已经收集和分析了大量数据集,但令人兴奋的很大程度上是由于社交数据的相对较新的可用性:人类互动的大量数字记录。这为人类集体行为提供了独特的全系统视角,带来了根本性的挑战和机遇。尽管近年来取得了巨大进步,但迄今为止,很少有专门开发用于分析社交数据集的算法框架。 该项目的目标是开发能够分析大规模社交数据的框架。 该项目寻求问题丰富的新颖模型,提出有关计算的深刻问题,并对社会学和数据科学产生长期影响。 从技术角度来看,该项目的目标是开发适当的算法机制,并具有强有力的理论保证,可以转化为实践结果。 该项目由三个主要研究方向组成。 第一线研究旨在发展一种理论,根据我们当前采取的行动的后果分布来优化未来的事件。 第二条研究考虑了社交数据的可学习性和可扩展性,及其对优化的解释。 第三条研究考虑针对噪声数据设计鲁棒优化算法。 该方法包括对真实数据集进行实验,以开发适当的算法机制,并具有强有力的理论保证,可转化为实践结果。 本科生和研究生课程都将从这个跨学科领域的课程开发中受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yaron Singer其他文献
Budget Feasible Mechanisms
- DOI:
10.1109/focs.2010.78 - 发表时间:
2010-02 - 期刊:
- 影响因子:0
- 作者:
Yaron Singer - 通讯作者:
Yaron Singer
Budget feasible mechanism design
- DOI:
10.1145/2692359.2692366 - 发表时间:
2014-11 - 期刊:
- 影响因子:0
- 作者:
Yaron Singer - 通讯作者:
Yaron Singer
Computation and incentives in combinatorial public projects
组合公共项目的计算和激励
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
David Buchfuhrer;Michael Schapira;Yaron Singer - 通讯作者:
Yaron Singer
Predicting Choice with Set-Dependent Aggregation
使用依赖于集合的聚合来预测选择
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Nir Rosenfeld;Kojin Oshiba;Yaron Singer - 通讯作者:
Yaron Singer
Posting Prices with Unknown Distributions
发布具有未知分布的价格
- DOI:
10.1145/3037382 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Moshe Babaioff;Liad Blumrosen;S. Dughmi;Yaron Singer - 通讯作者:
Yaron Singer
Yaron Singer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yaron Singer', 18)}}的其他基金
AF: Small: Foundations for Data-driven Algorithmics
AF:小:数据驱动算法的基础
- 批准号:
1816874 - 财政年份:2018
- 资助金额:
$ 51.5万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Socio-Algorithmic Foundations of Trustworthy Recommendations
职业:值得信赖的推荐的社会算法基础
- 批准号:
2239194 - 财政年份:2023
- 资助金额:
$ 51.5万 - 项目类别:
Continuing Grant
CAREER: Algorithmic foundations for practical acceleration in computational sciences
职业:计算科学实践加速的算法基础
- 批准号:
2145629 - 财政年份:2022
- 资助金额:
$ 51.5万 - 项目类别:
Continuing Grant
CAREER: Algorithmic Foundations for Demand-Responsive Transit Systems - Creating More Equitable and Sustainable Cities through Better Transit
职业:需求响应型交通系统的算法基础 - 通过更好的交通创建更加公平和可持续的城市
- 批准号:
2144127 - 财政年份:2022
- 资助金额:
$ 51.5万 - 项目类别:
Continuing Grant
CAREER: AF: New Algorithmic Foundations for Fair Division through Competitive Equilibrium
职业:AF:通过竞争均衡实现公平分配的新算法基础
- 批准号:
1942321 - 财政年份:2020
- 资助金额:
$ 51.5万 - 项目类别:
Continuing Grant
CAREER: New Algorithmic Foundations for Online Scheduling
职业:在线调度的新算法基础
- 批准号:
1844939 - 财政年份:2019
- 资助金额:
$ 51.5万 - 项目类别:
Continuing Grant
CAREER: Algorithmic Foundations and Modern Applications for Program Synthesis
职业:程序综合的算法基础和现代应用
- 批准号:
1652140 - 财政年份:2017
- 资助金额:
$ 51.5万 - 项目类别:
Continuing Grant
CAREER: Massive Uniform Manipulation: Algorithmic and Control Theoretic Foundations for Large Populations of Simple Robots Controlled by Uniform Inputs
职业:大规模均匀操纵:均匀输入控制的大量简单机器人的算法和控制理论基础
- 批准号:
1553063 - 财政年份:2016
- 资助金额:
$ 51.5万 - 项目类别:
Continuing Grant
Doctoral Student Career Development at the Workshop on the Algorithmic Foundations of Robotics (WAFR)
机器人算法基础研讨会(WAFR)上的博士生职业发展
- 批准号:
1648643 - 财政年份:2016
- 资助金额:
$ 51.5万 - 项目类别:
Standard Grant
CAREER: The Algorithmic Foundations of Data Privacy
职业:数据隐私的算法基础
- 批准号:
1253345 - 财政年份:2013
- 资助金额:
$ 51.5万 - 项目类别:
Continuing Grant
CAREER: Algorithmic and Software Foundations for Large-Scale Graph Analysis
职业:大规模图形分析的算法和软件基础
- 批准号:
1253881 - 财政年份:2013
- 资助金额:
$ 51.5万 - 项目类别:
Standard Grant














{{item.name}}会员




