CAREER: Structured Learning of Distribution Spaces

职业:分布空间的结构化学习

基本信息

  • 批准号:
    1254218
  • 负责人:
  • 金额:
    $ 46.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

A rapid acceleration in both volume and complexity of public domain and scientific data presents new and exciting challenges. This project aims to develop a theoretical framework for structured learning of distribution spaces and study tools for identifying and utilizing probabilistic structure in high-dimensional large volume data. This project lies within the intersection of multiple disciplines: signal processing, pattern recognition, machine learning, probability and statistics, and thus will foster collaboration among these disciplines. The application of the proposed framework to data-driven medical diagnosis and ecological research will further the impact of this project beyond the realm of computational data analysis. Additionally, this research sets a goal to enrich the quality of education for both undergraduate and graduate students, through exciting integration of research, application, and new curriculum.The research framework consists of geometrically-constrained probabilistic modeling and efficient optimization approaches for inference of multiple instance data. The project sets forth the following tasks i) confidence-constrained joint estimation of multiple discrete probability models, ii) joint learning of multiple distribution based geometrically-constrained maximum-entropy models, and iii) direct application of the developed framework to the analysis of clinical flow cytometry data for medical diagnosis and in-situ bioacoustics data for ecological research.
公共领域和科学数据的数量和复杂性的快速增长带来了新的和令人兴奋的挑战。该项目旨在开发分布空间结构化学习的理论框架,以及识别和利用高维大容量数据中概率结构的研究工具。该项目位于多个学科的交叉点:信号处理,模式识别,机器学习,概率和统计,因此将促进这些学科之间的合作。将所提出的框架应用于数据驱动的医学诊断和生态研究,将进一步扩大该项目在计算数据分析领域之外的影响。此外,本研究设定了一个目标,以丰富本科生和研究生的教育质量,通过令人兴奋的研究,应用和新的course.The研究框架的整合几何约束的概率建模和高效的优化方法推理的多个实例数据。该项目提出了以下任务:i)多个离散概率模型的置信约束联合估计,ii)基于几何约束的最大熵模型的多个分布的联合学习,以及iii)将开发的框架直接应用于分析用于医疗诊断的临床流式细胞术数据和用于生态研究的原位生物声学数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raviv Raich其他文献

A two-step self consistent algorithm for extracting magnetic anisotropy constants from angle-dependent ferromagnetic resonance measurements
  • DOI:
    10.1016/j.jmmm.2024.172562
  • 发表时间:
    2024-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Khalid Ibne Masood;Raviv Raich;Albrecht Jander;Pallavi Dhagat
  • 通讯作者:
    Pallavi Dhagat

Raviv Raich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raviv Raich', 18)}}的其他基金

ABI Innovation: Computational Methods for Bioacoustic Avian Species Monitoring
ABI Innovation:生物声学鸟类物种监测的计算方法
  • 批准号:
    1356792
  • 财政年份:
    2014
  • 资助金额:
    $ 46.81万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 46.81万
  • 项目类别:
    Continuing Grant
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
  • 批准号:
    2340481
  • 财政年份:
    2024
  • 资助金额:
    $ 46.81万
  • 项目类别:
    Continuing Grant
CAREER: Learning Structured Models with Natural Language Supervision
职业:利用自然语言监督学习结构化模型
  • 批准号:
    2238240
  • 财政年份:
    2023
  • 资助金额:
    $ 46.81万
  • 项目类别:
    Continuing Grant
CAREER: Reinforcement Learning-Based Control of Heterogeneous Multi-Agent Systems in Structured Environments: Algorithms and Complexity
职业:结构化环境中异构多智能体系统的基于强化学习的控制:算法和复杂性
  • 批准号:
    2237830
  • 财政年份:
    2023
  • 资助金额:
    $ 46.81万
  • 项目类别:
    Continuing Grant
CAREER: Resource Efficient Systems for Machine Learning on Structured Data
职业:结构化数据机器学习的资源高效系统
  • 批准号:
    2237306
  • 财政年份:
    2023
  • 资助金额:
    $ 46.81万
  • 项目类别:
    Continuing Grant
CAREER: Learning Structured Representations with Deep Probabilistic Programs
职业:通过深度概率程序学习结构化表示
  • 批准号:
    2047253
  • 财政年份:
    2021
  • 资助金额:
    $ 46.81万
  • 项目类别:
    Continuing Grant
CAREER: Contingent Learning in a Structured World
职业:结构化世界中的条件学习
  • 批准号:
    1846578
  • 财政年份:
    2019
  • 资助金额:
    $ 46.81万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Learning and Testing Structured Probabilistic Models
职业:学习和测试结构化概率模型的有效算法
  • 批准号:
    2011255
  • 财政年份:
    2019
  • 资助金额:
    $ 46.81万
  • 项目类别:
    Continuing Grant
CAREER: Geometry and Learning for Manifold-Structured Data in 3D and Beyond
职业:3D 及其他流形结构数据的几何和学习
  • 批准号:
    1752934
  • 财政年份:
    2018
  • 资助金额:
    $ 46.81万
  • 项目类别:
    Continuing Grant
CAREER: Adversarial Machine Learning for Structured Prediction
职业:用于结构化预测的对抗性机器学习
  • 批准号:
    1652530
  • 财政年份:
    2017
  • 资助金额:
    $ 46.81万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了