CAREER: Novel Engineered Nanostructured Complex Oxide Thermoelectric Materials for High Temperature Power Generation

职业:用于高温发电的新型工程纳米结构复合氧化物热电材料

基本信息

  • 批准号:
    1254594
  • 负责人:
  • 金额:
    $ 53.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL DESCRIPTION: Industry power plants, exhaust from turbine engines and automobiles generate an enormous amount of heat that is unproductively released into the environment, thereby wasting vast amount of thermal energy. A potential way to improve the sustainability of our energy infrastructure and electricity base is through waste heat recovery using thermoelectric power generators that possess the ability to directly transform temperature differentials into electrical power. Oxide materials, such as newly developed non-toxic calcium cobaltite (CCO) are particularly promising for applications in thermoelectric power generators because of their stability in air even at high temperatures. The current challenge for developing thermoelectric oxide is to improve the energy conversion efficiency, which is currently lower than that of the conventional thermoelectric materials. This CAREER project explores the key nanostructure science and engineering processes necessary to improve the energy conversion efficiency of thermoelectric oxide. The educational aspect of this project involves training both graduate and undergraduate students, and broadening the participation of underrepresented student groups in materials science and engineering research. To introduce the novel concept of thermoelectric materials and energy sustainability to the broader society, high school teachers are involved in the project through the existing Teachers Research Experience for the Advancement of Knowledge program at West Virginia University. The high school teachers are collecting their lab experiences in a journal, and designing and developing teaching materials about advanced materials for energy application for their classrooms.TECHNICAL DETAILS: The current challenge for developing thermoelectric oxide is to improve the conversion efficiency, which is currently lower than that of the conventional thermoelectric materials. The objective of this CAREER project is to improve the energy conversion properties of oxide CCO, through nanostructure engineering approaches. This project explores novel doping and thermal transport tailoring strategies in CCO with engineered nanoscale inclusions, through experimental synthesis/measurement and transmission electron microscopy. In particular, this project utilizes the synergetic combination of different defects including dopants, and nanoscale inclusions in CCO to enhance the electrical transport properties and minimize thermal conductivity simultaneously. The successful completion of this project is expected to identify the key nanostructure engineering processes necessary to improve the energy conversion efficiency of oxide ceramics that could be utilized for high temperature applications, such as applications in fossil energy power plants and automobiles. While the above research will have direct impact on the development of thermoelectric oxide, the fundamental knowledge on the nanostructure engineering of ceramic materials gained from the research will be instrumental to many other ceramic systems. Those systems include oxide refractory materials and oxide thermal barrier coatings for gas turbines that can benefit significantly from engineered thermal conductivity reductions. This CAREER project has a strong focus on integration of research and education at both the undergraduate and graduate levels, for carrying out cutting-edge research in advanced ceramics for energy harvesting, and nanoscale science and technology.
非技术描述:工业发电厂、涡轮发动机和汽车的废气产生大量的热量,这些热量以非生产性的方式释放到环境中,从而浪费大量的热能。改善我们能源基础设施和电力基础的可持续性的一个潜在方法是利用具有直接将温差转换为电能的能力的热电发电机来回收余热。氧化物材料,如新开发的无毒钴酸钙(CCO),由于其在高温下在空气中的稳定性,在热电发电机中的应用前景特别好。目前开发热电氧化物面临的挑战是提高能量转换效率,而目前热电材料的能量转换效率低于传统的热电材料。这个职业项目探索了提高热电氧化物能量转换效率所必需的关键纳米结构科学和工程工艺。该项目的教育方面包括培养研究生和本科生,并扩大未被充分代表的学生群体对材料科学和工程研究的参与。为了向更广泛的社会介绍热电材料和能源可持续发展的新概念,高中教师通过西弗吉尼亚大学现有的教师知识促进研究经验项目参与了该项目。高中教师正在将他们的实验经验收集在一本期刊上,为他们的课堂设计和开发先进材料的能源应用教材。技术细节:目前开发热电氧化物的挑战是提高转换效率,目前这一效率低于传统的热电材料。这个职业项目的目标是通过纳米结构工程方法改善氧化物CCO的能量转换性能。该项目通过实验合成/测量和透射电子显微镜,探索了在CCO中使用工程纳米包裹体的新的掺杂和热传输定制策略。特别是,该项目利用包括掺杂剂在内的不同缺陷和CCO中的纳米级夹杂的协同组合来增强电传输性能,同时将导热系数降至最低。该项目的成功完成有望确定提高氧化物陶瓷能量转换效率所需的关键纳米结构工程工艺,这些工艺可用于高温应用,如化石能源发电厂和汽车中的应用。虽然上述研究将对热电氧化物的发展产生直接影响,但从研究中获得的陶瓷材料纳米结构工程的基础知识将对许多其他陶瓷系统有用。这些系统包括用于燃气轮机的氧化物耐火材料和氧化物热障涂层,它们可以从工程设计的导热系数降低中受益匪浅。这个职业项目非常注重本科生和研究生水平的研究和教育的整合,开展用于能源收集的先进陶瓷和纳米科学和技术的尖端研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xueyan Song其他文献

Microstructural study of high-temperature Cr–Ni–Al–Ti alloys supported by first-principles calculations
第一性原理计算支持的高温 Cr-Ni-Al-Ti 合金的微观结构研究
  • DOI:
    10.1016/j.intermet.2012.12.001
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ö. Doğan;Xueyan Song;S. Chen;M. Gao
  • 通讯作者:
    M. Gao
Microstructure degradation of YSZ in Ni/YSZ anodes of SOFC operated in phosphine-containing fuels
在含磷燃料中运行的 SOFC 的 Ni/YSZ 阳极中 YSZ 的微观结构退化
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yun Chen;Song Chen;Gregory A. Hackett;H. Finklea;J. Zondlo;I. Celik;Xueyan Song;K. Gerdes
  • 通讯作者:
    K. Gerdes
Growth of InAs on Si substrates at low temperatures using metalorganic vapor phase epitaxy
使用金属有机气相外延在 Si 衬底上低温生长 InAs
  • DOI:
    10.1016/j.jcrysgro.2008.07.048
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    S. Jha;Xueyan Song;S. Babcock;T. Kuech;D. Wheeler;Bin Wu;P. Fay;A. Seabaugh
  • 通讯作者:
    A. Seabaugh
Atomic structure and chemistry of dense nano-precipitates in MgB2 ceramic
MgB2陶瓷中致密纳米沉淀的原子结构和化学性质
  • DOI:
    10.1016/j.ceramint.2012.11.011
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xueyan Song
  • 通讯作者:
    Xueyan Song
Growth of strained GaAs1−ySby and GaAs1−y−zSbyNz quantum wells on InP substrates
InP 衬底上应变 GaAs1−ySby 和 GaAs1−y−zSbyNz 量子阱的生长
  • DOI:
    10.1016/j.jcrysgro.2007.11.207
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    J. Huang;D. Xu;Xueyan Song;S. Babcock;T. Kuech;L. Mawst
  • 通讯作者:
    L. Mawst

Xueyan Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xueyan Song', 18)}}的其他基金

Controlling Thermoelectric Properties of Complex Oxide Ceramics by Integrated Design of Grain Boundaries and Interfaces
通过晶界和界面的集成设计控制复合氧化物陶瓷的热电性能
  • 批准号:
    1916581
  • 财政年份:
    2019
  • 资助金额:
    $ 53.57万
  • 项目类别:
    Continuing Grant

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A novel precision-engineered microfluidic chip for wear particle research
一种用于磨损颗粒研究的新型精密设计微流控芯片
  • 批准号:
    DP240102971
  • 财政年份:
    2024
  • 资助金额:
    $ 53.57万
  • 项目类别:
    Discovery Projects
SBIR Phase I: Engineered Induced Thymic Epithelial Cells for Novel T Cell Immunotherapies
SBIR 第一期:用于新型 T 细胞免疫疗法的工程诱导胸腺上皮细胞
  • 批准号:
    2234041
  • 财政年份:
    2023
  • 资助金额:
    $ 53.57万
  • 项目类别:
    Standard Grant
Developing novel animal cell lines and processes incoperating engineered caf1 to scale cultured meat protein manufacturing
开发新型动物细胞系和工艺,与工程化 caf1 相结合,以扩大培养肉蛋白生产规模
  • 批准号:
    10076199
  • 财政年份:
    2023
  • 资助金额:
    $ 53.57万
  • 项目类别:
    Collaborative R&D
CAREER: Design and validation of a novel part-brain-part-engineered gas sensor for noninvasive detection of lung cancer
职业:设计和验证一种新型半脑半工程气体传感器,用于肺癌无创检测
  • 批准号:
    2238686
  • 财政年份:
    2023
  • 资助金额:
    $ 53.57万
  • 项目类别:
    Continuing Grant
Development of a Novel Engineered Tendon Graft to Assist in Repair of Rotator Cuff Injuries
开发新型工程肌腱移植物以协助修复肩袖损伤
  • 批准号:
    10697147
  • 财政年份:
    2023
  • 资助金额:
    $ 53.57万
  • 项目类别:
Development of an osteoarthritis drug screening platform using engineered stem cell lines to identify novel mechanisms of disease biology
使用工程干细胞系开发骨关节炎药物筛选平台,以确定疾病生物学的新机制
  • 批准号:
    2753493
  • 财政年份:
    2022
  • 资助金额:
    $ 53.57万
  • 项目类别:
    Studentship
Developing novel small molecule boosting agents for anti-cancer engineered T cell therapies
开发用于抗癌工程 T 细胞疗法的新型小分子增强剂
  • 批准号:
    486498
  • 财政年份:
    2022
  • 资助金额:
    $ 53.57万
  • 项目类别:
    Studentship Programs
Novel instrumentation and models for biomechanical assessment of engineered protection devices
用于工程保护装置生物力学评估的新型仪器和模型
  • 批准号:
    RGPIN-2018-04253
  • 财政年份:
    2022
  • 资助金额:
    $ 53.57万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring the metabolic diversity of engineered fungal non-ribosomal peptide synthetase-like enzymes for the development of novel antibiotics
探索工程真菌非核糖体肽合成酶样酶的代谢多样性以开发新型抗生素
  • 批准号:
    BB/W007533/1
  • 财政年份:
    2022
  • 资助金额:
    $ 53.57万
  • 项目类别:
    Research Grant
Novel molecular tools to improve the engineered biosynthesis of opioid pharmaceuticals
改善阿片类药物工程生物合成的新型分子工具
  • 批准号:
    546620-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 53.57万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了