CAREER: Explicit Adaptive Methods for Coupled Problems
职业:耦合问题的显式自适应方法
基本信息
- 批准号:1254618
- 负责人:
- 金额:$ 40.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The design of adaptive algorithms with provable optimal error decay rates on elliptic problems are well understood, encouraging results are available for parabolic equations while few results are derived in hyperbolic regimes. Although coupled problems are ubiquitous in science and engineering, their adaptive treatment is in its infancy. In fact, ad hoc adaptivity without rigorous justification is very popular but its efficiency suffers from solid mathematical grounding. Yet, the increasingly amount of resources involved in coupled systems makes adaptive algorithms even more essential. The aim of the proposed research is to design, analyze and implement adaptive algorithms tailored to coupled problems. The following objectives are put forward: (i) develop a systematic framework for the design of explicit adaptive algorithms iterating between the resolution of each quantity of interest; (ii) study a new concept of approximation able to describe the nonlinear interactions between each component of the coupled systems; (iii) derive optimal convergence decay rates in the context of elliptic problems, saddle point systems, and time dependent problems; (iv) challenge the new algorithms in the context of living cell motility where numerical methods must confront the complexity of the numerous phenomena involved and their interactions with the cell geometry. Modern algorithms are able to optimize and balance the computational effort to capture small details without over-resolving the quantity of interest. However, when several processes interacting with each other need to be approximated, the established theory fails to apply due to two major obstructions: (i) the algorithm is required to make decisions without complete knowledge of all interacting quantities; (ii) the abilities to approximate each component of the system are tangled together in a highly nonlinear fashion. We propose to initiate a systematic study of couple problems with special emphasis to physical models related to living cell motility. The difficulty of modeling cell locomotion is to overcome the inherent great computational expense when considering multi-scale, multi-dimensional and multi-component phenomena. Efficient and flexible algorithms are thus critical in this context. The understanding of cell locomotion has impact on several areas of bio-physics such as in embryonic development, tissue regeneration, immune response and wound healing in multi-cellular organisms. In addition, the proposed study will actually benefit strategic departments such as energy (oil recovery and carbon dioxide sequestration), environment (groundwater contamination) and material science (cloaking and filter design).
椭圆问题具有可证明的最优误差衰减率的自适应算法的设计是众所周知的,抛物型方程得到了令人鼓舞的结果,而在双曲型区域得到的结果很少。虽然耦合问题在科学和工程中普遍存在,但它们的适应性处理还处于初级阶段。事实上,没有严格理由的自适应非常流行,但其效率受到坚实的数学基础的影响。然而,耦合系统所涉及的资源越来越多,这使得自适应算法变得更加重要。这项研究的目的是设计、分析和实现针对耦合问题的自适应算法。提出了以下目标:(I)建立一个系统的框架,用于设计在每个感兴趣的量的分辨率之间迭代的显式自适应算法;(Ii)研究能够描述耦合系统的每个组件之间的非线性相互作用的新的逼近概念;(Iii)在椭圆问题、鞍点系统和依赖时间的问题的背景下推导最优收敛衰减率;(Iv)在活细胞运动的背景下挑战新的算法,其中数值方法必须面对所涉及的众多现象的复杂性以及它们与细胞几何的相互作用。现代算法能够优化和平衡计算工作,以捕获小细节,而不会过度解析感兴趣的数量。然而,当几个相互作用的过程需要近似时,已建立的理论由于两个主要障碍而不适用:(I)算法需要在不完全了解所有相互作用量的情况下做出决策;(Ii)逼近系统每个分量的能力以高度非线性的方式纠缠在一起。我们建议开始对耦合问题进行系统的研究,特别强调与活细胞运动有关的物理模型。细胞运动建模的难点在于克服了在考虑多尺度、多维、多分量现象时固有的巨大计算量。因此,在这种情况下,高效和灵活的算法至关重要。对细胞运动的了解对多细胞生物体的胚胎发育、组织再生、免疫反应和伤口愈合等生物物理领域具有重要影响。此外,拟议的研究实际上将使能源(石油开采和二氧化碳封存)、环境(地下水污染)和材料科学(遮盖和过滤器设计)等战略部门受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Bonito其他文献
Mathematical analysis of a simplified Hookean dumbbells model arising from viscoelastic flows
- DOI:
10.1007/s00028-006-0251-1 - 发表时间:
2006-08-01 - 期刊:
- 影响因子:1.200
- 作者:
Andrea Bonito;Philippe Clément;Marco Picasso - 通讯作者:
Marco Picasso
Andrea Bonito的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Bonito', 18)}}的其他基金
Finite Element Approximations of Developable Surfaces with Curved Folds
具有弯曲褶皱的可展曲面的有限元近似
- 批准号:
2110811 - 财政年份:2021
- 资助金额:
$ 40.54万 - 项目类别:
Continuing Grant
Finite Element Approximations of Bending Actuated Devices
弯曲驱动装置的有限元近似
- 批准号:
1817691 - 财政年份:2018
- 资助金额:
$ 40.54万 - 项目类别:
Continuing Grant
Space and Time Adaptivity for Moving and Free Boundary Problems
移动边界和自由边界问题的空间和时间自适应性
- 批准号:
0914977 - 财政年份:2009
- 资助金额:
$ 40.54万 - 项目类别:
Standard Grant
相似海外基金
Global spatially explicit gridded transport model coupled with an integrated assessment model: a new-generation simulation framework for transport decarbonization strategy
全球空间明确网格交通模型与综合评估模型相结合:新一代交通脱碳战略模拟框架
- 批准号:
23K28290 - 财政年份:2024
- 资助金额:
$ 40.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Real-time Assurance of Financial Guidance AI using Explicit Guardrails
使用显式护栏实时保证财务指导人工智能
- 批准号:
10072685 - 财政年份:2023
- 资助金额:
$ 40.54万 - 项目类别:
Grant for R&D
ExPliCit - Exploring Plausible Circular futures
ExPliCit - 探索合理的循环期货
- 批准号:
EP/X039676/1 - 财政年份:2023
- 资助金额:
$ 40.54万 - 项目类别:
Research Grant
Probing Amyloid Fibril Self-Assembly with Network Hamiltonian Simulations in Explicit Space
用显式空间中的网络哈密顿模拟探测淀粉样蛋白原纤维的自组装
- 批准号:
10715891 - 财政年份:2023
- 资助金额:
$ 40.54万 - 项目类别:
Emotional education programs focusing on implicit and explicit affect: Development of early intervention methods and examination of their effectiveness
关注内隐和外显情感的情绪教育项目:早期干预方法的开发及其有效性检验
- 批准号:
23K02962 - 财政年份:2023
- 资助金额:
$ 40.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neural mechanisms that determine cooperation and competition between explicit and implicit learning
决定显性学习和隐性学习之间合作与竞争的神经机制
- 批准号:
23KJ2231 - 财政年份:2023
- 资助金额:
$ 40.54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Global spatially explicit gridded transport model coupled with an integrated assessment model: a new-generation simulation framework for transport decarbonization strategy
全球空间明确网格交通模型与综合评估模型相结合:新一代交通脱碳战略模拟框架
- 批准号:
23H03600 - 财政年份:2023
- 资助金额:
$ 40.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Replicating Dynamic Objects without Explicit 3D Reconstruction
无需显式 3D 重建即可复制动态对象
- 批准号:
23KJ0284 - 财政年份:2023
- 资助金额:
$ 40.54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Modular Cocycles, Explicit Class Field Theory, and Quantum Designs
模块化共循环、显式类场论和量子设计
- 批准号:
2302514 - 财政年份:2023
- 资助金额:
$ 40.54万 - 项目类别:
Continuing Grant
Conference: Inclusive Paths in Explicit Number Theory
会议:显式数论中的包容性路径
- 批准号:
2302536 - 财政年份:2023
- 资助金额:
$ 40.54万 - 项目类别:
Standard Grant