Finite Element Approximations of Developable Surfaces with Curved Folds
具有弯曲褶皱的可展曲面的有限元近似
基本信息
- 批准号:2110811
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability to generate complex and robust deformations from relatively small energies has a tremendous number of applications in many areas including the strategic areas of aerospace, nanotechnology and biotechnology. This research project explores the potential benefits of folding devices where folding does not necessarily occur on straight lines. Compared to more traditional origami-type deformations, curved creases greatly expand the range and rigidity of achievable configurations. The design of deployable surfaces such as solar panels, solar sails, space telescopes, airbags, flapping devices, and ingestible robots are few examples benefiting from this technology. This project encompasses the mathematical modeling of folding devices, the design of numerical algorithms predicting their deformations, and a mathematical analysis guaranteeing the efficiency of the predictions.The PI will consider thin materials resisting shear and stretch but allowing for bending away from non-necessarily straight creases. In recent years, these curved origamis received significant attention from the scientific community in view of the fascinating variety of shapes they can exhibit, their ability to produce rigid configurations and flapping mechanisms, their capacity to undergo large deformations using a small amount of energy, and their applicability at small and large scales alike. The outcomes of this research program include the derivation of a reduced plate model for thin materials resisting bending and allowing for folding along curved locations, the design and analysis of finite element algorithms approximating the dynamics and equilibriums of the corresponding plate deformations, and a parallel implementation of the proposed algorithms illustrating their efficiency on benchmarks as well as on configurations relevant to practitioners. Central in this study, the concept of gamma convergence is used to justify the reduced model but also developed for the analysis of the associated numerical methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从相对较小的能量产生复杂和稳健变形的能力在许多领域中具有大量的应用,包括航空航天、纳米技术和生物技术的战略领域。该研究项目探讨了折叠设备的潜在好处,其中折叠不一定发生在直线上。与更传统的折纸类型变形相比,弯曲折痕大大扩展了可实现配置的范围和刚度。可展开表面的设计,如太阳能电池板,太阳帆,太空望远镜,安全气囊,扑翼装置和可摄取机器人,都是受益于这项技术的少数例子。该项目包括折叠装置的数学建模,预测其变形的数值算法设计,以及保证预测效率的数学分析。PI将考虑薄材料抵抗剪切和拉伸,但允许弯曲远离不必要的直折痕。近年来,这些弯曲的折纸得到了科学界的极大关注,因为它们可以展示出迷人的各种形状,它们能够产生刚性配置和拍打机制,它们能够使用少量能量进行大变形,以及它们在小尺度和大尺度上的适用性。这项研究计划的成果包括推导出一个减少板模型薄材料抵抗弯曲,并允许折叠沿着弯曲的位置,有限元算法的设计和分析近似的动态和平衡的相应板变形,并并行实施所提出的算法,说明其效率的基准以及配置相关的从业者。在这项研究的中心,伽玛收敛的概念是用来证明简化模型,但也开发了相关的数值方法的分析。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling and simulation of thin sheet folding
薄板折叠建模与仿真
- DOI:10.4171/ifb/478
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Bartels, Sören;Bonito, Andrea;Hornung, Peter
- 通讯作者:Hornung, Peter
Approximation of the Spectral Fractional Powers of the Laplace-Beltrami Operator
Laplace-Beltrami算子的谱分数幂的近似
- DOI:10.4208/nmtma.oa-2022-0005s
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:null, Andrea Bonito;Lei, Wenyu
- 通讯作者:Lei, Wenyu
Numerical analysis of the LDG method for large deformations of prestrained plates
预应变板大变形LDG法数值分析
- DOI:10.1093/imanum/drab103
- 发表时间:2022
- 期刊:
- 影响因子:2.1
- 作者:Bonito, Andrea;Guignard, Diane;Nochetto, Ricardo H.;Yang, Shuo
- 通讯作者:Yang, Shuo
Error estimates for a linear folding model
线性折叠模型的误差估计
- DOI:10.1093/imanum/drad004
- 发表时间:2023
- 期刊:
- 影响因子:2.1
- 作者:Bartels, Sören;Bonito, Andrea;Tscherner, Philipp
- 通讯作者:Tscherner, Philipp
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Bonito其他文献
Mathematical analysis of a simplified Hookean dumbbells model arising from viscoelastic flows
- DOI:
10.1007/s00028-006-0251-1 - 发表时间:
2006-08-01 - 期刊:
- 影响因子:1.200
- 作者:
Andrea Bonito;Philippe Clément;Marco Picasso - 通讯作者:
Marco Picasso
Andrea Bonito的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Bonito', 18)}}的其他基金
Finite Element Approximations of Bending Actuated Devices
弯曲驱动装置的有限元近似
- 批准号:
1817691 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Explicit Adaptive Methods for Coupled Problems
职业:耦合问题的显式自适应方法
- 批准号:
1254618 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Space and Time Adaptivity for Moving and Free Boundary Problems
移动边界和自由边界问题的空间和时间自适应性
- 批准号:
0914977 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
毛竹MLE(mariner-like element)转座酶催化机理研究
- 批准号:LZ19C160001
- 批准年份:2018
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Finite Element Approximations of Bending Actuated Devices
弯曲驱动装置的有限元近似
- 批准号:
1817691 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Finite Element Methods for Incompressible Flow Yielding Divergence-Free Approximations
不可压缩流产生无散近似的有限元方法
- 批准号:
1719829 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Research Initiation Award: Superconvergence of Finite Element Approximations for the Second Order Elliptic Problems by L^2 Projection Methods
研究启动奖:L^2投影法对二阶椭圆问题有限元逼近的超收敛
- 批准号:
1505119 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
finte element approximations of stochastic flow equations involving wick products
涉及吸芯积的随机流动方程的有限元近似
- 批准号:
46545-2005 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
finte element approximations of stochastic flow equations involving wick products
涉及吸芯积的随机流动方程的有限元近似
- 批准号:
46545-2005 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
finte element approximations of stochastic flow equations involving wick products
涉及吸芯积的随机流动方程的有限元近似
- 批准号:
46545-2005 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
finte element approximations of stochastic flow equations involving wick products
涉及吸芯积的随机流动方程的有限元近似
- 批准号:
46545-2005 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
finte element approximations of stochastic flow equations involving wick products
涉及吸芯积的随机流动方程的有限元近似
- 批准号:
46545-2005 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Finite Element Approximations For Wave Propagation in Nonlinear Solids
非线性固体中波传播的有限元近似
- 批准号:
7600031 - 财政年份:1976
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Convergence and Accuracy of Finite Element Approximations InFinite Elasticity
无限弹性有限元近似的收敛性和精度
- 批准号:
7507846 - 财政年份:1976
- 资助金额:
$ 30万 - 项目类别:
Standard Grant