CAREER: Process, Voltage, and Temperature (PVT)-Tolerant CMOS Photonic Interconnect Transceiver Architectures

职业:耐工艺、电压和温度 (PVT) 的 CMOS 光子互连收发器架构

基本信息

项目摘要

Intellectual Merit: The photonic interconnect architectures and design techniques proposed here aim to significantly improve interconnect robustness, energy efficiency, and bandwidth density, which is necessary for continued scaling of future computer systems. While progress has been made in photonic interconnects, the optimal interconnect architecture which most efficiently leverages these optical devices for off-chip and network-on-chip applications is still an open question. This work?s research goal is to develop robust energy-efficient transceivers for a unified inter- and intra-chip photonic interconnect architecture based on integrated ring resonator modulators and waveguide photodetectors. To accomplish this goal, an ultra-fast system-level optimization framework for photonic on-chip networks and inter-chip links that investigates trade-offs in bandwidth density, energy efficiency, and interconnect throughput will be developed to compare photonic interconnect technologies and leveraged in the design of the proposed architecture. Novel circuit topologies will be developed that address challenges imposed due to nanometer transistor scaling properties, such as transistor reliability constraints conflicting with voltage-swing requirements of optical source devices and shrinking transistor gain and growing mismatch having a large impact on receiver sensitivity. The combination of system level optimization with circuit-level accuracy and new ultra-efficient circuit topologies enables architectures capable of leveraging photonic interconnects? properties of extreme low latency and high bandwidth to realize completely new computing models with orders of magnitude performance improvement.Broader Impact: The explosion in interconnect bandwidth capacity provided by this photonic interconnect architecture will allow the realization of numerous transformative applications, such as future smart mobile devices capable of Tflop/s performance, multi-channel high-resolution magnetic resonance imaging, and exascale supercomputers. Interconnect architectures developed with the proposed optimization framework will have a broad impact on not only the US semiconductor industry, but also on the sustainability and security of the nation as a whole, as it will dramatically reduce the energy these integrated systems demand. This project will include an interdisciplinary educational program involving 1 Ph.D. and 5 undergraduate students, with a commitment in several engaging outreach activities to foster the representation of women and minority groups. These activities include participating in a four-week summer workshop for K-12 school teachers and also annual one-week summer camps for high school students. Project results will be broadly disseminated by inclusion in the syllabi and website of a new graduate course entitled ?Optical Interconnect Circuits and Systems? and through publication in national and international journals and conferences.
智力优势:本文提出的光子互连架构和设计技术旨在显著提高互连鲁棒性、能量效率和带宽密度,这对于未来计算机系统的持续扩展是必要的。虽然在光子互连方面已经取得了进展,但最有效地利用这些光学器件用于片外和片上网络应用的最佳互连架构仍然是一个悬而未决的问题。这个工作吗?的研究目标是开发强大的节能收发器,用于基于集成环形谐振器调制器和波导光电探测器的统一芯片间和芯片内光子互连架构。为了实现这一目标,将开发用于光子片上网络和芯片间链路的超快速系统级优化框架,该框架将研究带宽密度,能效和互连吞吐量的权衡,以比较光子互连技术并在拟议架构的设计中加以利用。将开发新型电路拓扑结构,以解决由于纳米晶体管缩放特性而带来的挑战,例如与光源器件的电压摆幅要求相冲突的晶体管可靠性约束,以及对接收器灵敏度有很大影响的晶体管增益收缩和失配增长。系统级优化与电路级精度和新的超高效电路拓扑结构相结合,使架构能够利用光子互连?更广泛的影响:这种光子互连架构所提供的互连带宽容量的爆炸式增长将允许实现许多变革性应用,例如能够实现Tflop/s性能的未来智能移动的设备、多通道高分辨率磁共振成像和兆兆级超级计算机。采用所提出的优化框架开发的互连架构不仅将对美国半导体行业产生广泛影响,而且还将对整个国家的可持续性和安全性产生广泛影响,因为它将大大降低这些集成系统的能源需求。该项目将包括一个跨学科的教育计划,涉及1博士。和5名本科生,致力于几个参与外联活动,以促进妇女和少数群体的代表性。这些活动包括参加K-12学校教师为期四周的暑期讲习班,以及每年为高中生举办的为期一周的夏令营。项目成果将通过在教学大纲和网站上列入一门新的研究生课程而广泛传播,该课程的题目是?光互连电路与系统并通过在国家和国际期刊和会议上发表文章。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Palermo其他文献

A 12.5 Gb/s 1.38 mW all-inverter-based optical receiver with multi-stage feedback TIA and continuous-time linear equalizer
  • DOI:
    10.1007/s10470-024-02248-1
  • 发表时间:
    2024-02-03
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Peng Yan;Chaerin Hong;Po-Hsuan Chang;Hyungryul Kang;Dedeepya Annabattuni;Ankur Kumar;Yang-Hang Fan;Ruida Liu;Ramy Rady;Samuel Palermo
  • 通讯作者:
    Samuel Palermo
Influence of soil hydraulic parameters on bulb size for surface and buried emitters
  • DOI:
    10.1016/j.agwat.2024.108756
  • 发表时间:
    2024-04-30
  • 期刊:
  • 影响因子:
  • 作者:
    Giorgio Baiamonte;Vincenzo Alagna;Dario Autovino;Massimo Iovino;Samuel Palermo;Girolamo Vaccaro;Vincenzo Bagarello
  • 通讯作者:
    Vincenzo Bagarello
Dual-Diameter Drip Laterals Laid on Flat Fields: Modelling and Measurements
  • DOI:
    10.1007/s11269-024-03976-9
  • 发表时间:
    2024-10-10
  • 期刊:
  • 影响因子:
    4.700
  • 作者:
    Giorgio Baiamonte;Samuel Palermo
  • 通讯作者:
    Samuel Palermo
10 Gb/s adaptive receive-side merged near-end and far-end crosstalk cancellation circuitry in 65 nm CMOS
Quantifying local losses due to root intrusion in subsurface drip irrigation systems by monitoring inlet discharge and pressure head
  • DOI:
    10.1007/s00271-024-00990-y
  • 发表时间:
    2024-12-05
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Giorgio Baiamonte;Girolamo Vaccaro;Samuel Palermo
  • 通讯作者:
    Samuel Palermo

Samuel Palermo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Palermo', 18)}}的其他基金

ACED Fab: Co-Design of Novel Electronic-Photonic Systems for Energy-Efficient Coherent Optical Interconnects
ACED Fab:用于节能相干光互连的新型电子-光子系统的协同设计
  • 批准号:
    2314868
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EARS: A Wideband Frequency-Agile Silicon Photonic mm-Wave Receiver with Automatic Jammer Suppression via Rapidly Reconfigurable Optical Notch Filters
EARS:宽带频率捷变硅光子毫米波接收器,通过快速可重构光学陷波滤波器实现自动干扰抑制
  • 批准号:
    1547432
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Advanced Modeling and Design of High-Performance ADC-Based Serial Links
基于高性能 ADC 串行链路的高级建模和设计
  • 批准号:
    1202508
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
磁转动超新星爆发中weak r-process的关键核反应
  • 批准号:
    12375145
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
多臂Bandit process中的Bayes非参数方法
  • 批准号:
    71771089
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

A study of all-digital ADC applicable to super-fine process and ultra-low voltage
适用于超精细工艺、超低电压的全数字ADC研究
  • 批准号:
    21K17722
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Energy Transient Process Control for Plasma Nitrogen Fixation with Ionization Wave Generated by Over Voltage Pulses
过压脉冲产生电离波等离子体固氮的能量瞬态过程控制
  • 批准号:
    20H01890
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
High-resolution low-voltage TEM for imaging the process of mineralization at the TMV/inorganic interface: Towards understanding the mechanical properties of bio/inorganic multilayer systems
用于对 TMV/无机界面矿化过程进行成像的高分辨率低压 TEM:了解生物/无机多层系统的机械性能
  • 批准号:
    286663312
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Priority Programmes
Formation mechanism and redissolution of cathode deposits and their influences on the cathodic voltage drop (CVD) in aluminum electrolysis process
铝电解过程中阴极沉积物的形成机制、再溶解及其对阴极电压降(CVD)的影响
  • 批准号:
    468858-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative Research and Development Grants
Research on breakdown process across micrometer-scale gap for improving withstand voltage of power apparatus
提高电力设备耐压的微米级间隙击穿过程研究
  • 批准号:
    15H06222
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Growth enhancement effect and food process design by high-voltage pulsed electric field with Aspergillus SP
高压脉冲电场对曲霉SP的生长促进作用及食品工艺设计
  • 批准号:
    15K06574
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Formation mechanism and redissolution of cathode deposits and their influences on the cathodic voltage drop (CVD) in aluminum electrolysis process
铝电解过程中阴极沉积物的形成机制、再溶解及其对阴极电压降(CVD)的影响
  • 批准号:
    468858-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative Research and Development Grants
Formation mechanism and redissolution of cathode deposits and their influences on the cathodic voltage drop (CVD) in aluminum electrolysis process
铝电解过程中阴极沉积物的形成机制、再溶解及其对阴极电压降(CVD)的影响
  • 批准号:
    468858-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative Research and Development Grants
CAREER: An Integrated Treatment of Voltage Noise and Process Variability in Many-core and GPU Systems with Microarchitectural Solutions
职业生涯:利用微架构解决方案对多核和 GPU 系统中的电压噪声和工艺变异性进行综合处理
  • 批准号:
    1253933
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
A study of the role of voltage-gated potassium channels in the process of phototransduction, in the setting of photoreceptor sensitivity levels and response times, and in the progression of a distinctive form of inherited retinal dystrophy
研究电压门控钾通道在光转导过程、光感受器敏感性水平和响应时间的设定以及遗传性视网膜营养不良的独特形式的进展中的作用
  • 批准号:
    nhmrc : 1029740
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Project Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了