ACED Fab: Co-Design of Novel Electronic-Photonic Systems for Energy-Efficient Coherent Optical Interconnects

ACED Fab:用于节能相干光互连的新型电子-光子系统的协同设计

基本信息

项目摘要

Dramatic improvements in datacenters and high-performance computing systems’ interconnect bandwidth-density and energy-efficiency are necessary to support advances in machine learning, artificial intelligence, sensor systems, and 5G/6G workloads. However, there are fundamental limitations to scaling data rates in conventional intensity-modulated direct detection (IMDD) optical links due to the extreme baud rates, i.e. changes in signals per second. Coherent optical interconnects offer a potential solution, as they modulate both the amplitude and phase of the optical carrier and utilize dual polarization (DP) operation to allow for a dramatic increase in bandwidth-density per wavelength. While coherent optical links are spectrally-efficient, key challenges include limited silicon photonic modulator bandwidth, high-power transceivers due to independent design of the photonic devices and front-end circuitry, sensitivity to photonic device fabrication variations, and high-power receiver-side optical carrier recovery that is commonly performed in a complex digital signal processor (DSP) block. This proposal addresses these important issues by co-designing high-bandwidth photonic devices and advanced-node CMOS front-ends that can adapt to variations in optical device performance and by utilizing a power-efficient receive-side carrier recovery scheme based on a dual-loop optical phased-locked loop (OPLL). The proposed technology will enable energy efficient coherent optical transceivers that will allow dramatic scaling in datacenter traffic capacity to support the unprecedented growth in networked devices driven by emerging applications such as connected automobiles, for example. This proposal’s research goal is to develop a coherent optical interconnect architecture with novel high-bandwidth quadrature modulators with thin-film LiNbO3 (TF-LN) Mach-Zehnder modulators (MZMs) and quadrature demodulators with graphene photodetectors. Co-design of energy-efficient CMOS transmitters with dynamic voltage frequency scaling (DVFS) with efficient switching regulators and energy-efficient CMOS receivers with DVFS, adaptive bandwidth front-ends, and auto-tuned quadrature demodulators will be fabricated to accomplish this goal. In addition, an optical phase-locked loop (OPLL) based carrier recovery scheme with wide-range electronic voltage-controlled oscillator (VCO) tuning will be developed. Applying the proposed technology will revolutionize the future of both datacenter and high-performance computing systems due to its ability to offer low-latency interconnects without error coding. This project will involve an interdisciplinary team of 2 Texas A&M University (TAMU) students and 3-4 National Chung Hsing University (NCHU) students. Two sets of prototypes will be implemented using two advanced CMOS processes, a silicon photonic process, and custom-fabricated thin-film TF-LN integrated circuits. Project outreach activities include exchange and visiting activities where TAMU and NCHU students work together face-to-face on-site during critical IC design phases and also participate in joint workshops, interactions with high school teachers via the Enrichment Experiences in Engineering (E3) program and introducing basic research concepts to PK-12 students through the Spark! Program. Project results will be broadly disseminated by inclusion in the syllabus and website of a new graduate course entitled "Coherent Optical Systems", the development of online modules for academia and industry, and through publication in national and international journals and conferences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了支持机器学习,人工智能,传感器系统和5G/6G工作负载,必须进行急剧改进数据中心和高性能计算系统的互连带宽密度和能源效率。但是,由于极端的波特速率,即信号的变化,传统强度调节直接检测(IMDD)光学链接的扩展速率存在基本限制。连贯的光学互连提供了潜在的解决方案,因为它们可以调节光载体的放大器和相位,并利用双极化(DP)操作,以允许每波长的带宽密度急剧增加。尽管相干的光学连接效率很高,但主要挑战包括有限的硅光子调制器带宽,由于光子设备的独立设计和前端电路而引起的高功率收发器,对光子设备装置制造变化的敏感性,以及在复杂的数字信号处理器(DSP)中表现出的高功率接收器光载体恢复(DSP)。该提案通过共同设计高带宽光子设备和高级节点CMOS前端来解决这些重要问题,这些设备可以适应光学设备性能的变化,并利用基于双环光循环锁定的锁定锁定锁定循环(OPLL),并利用功率有效的接收器载波恢复方案。所提出的技术将使节能连贯的光学收发器能够允许数据中心交通能力的显着缩放,以支持由新兴应用程序(例如连接的汽车)驱动的网络设备中前所未有的增长。该提案的研究目标是使用具有薄膜linbo3(TF-LN)Mach-Zehnder调制器(MZMS)的新型高带宽正交调制器开发一个连贯的光学互连结构,并开发了带有石墨烯光电探测器的薄膜linbo3(TF-LN)Mach-Zehnder调制器(MZMS)。具有动态电压频率缩放(DVF)的能源有效CMOS发射器的共同设计,具有有效的开关调节器和具有DVF的能源有效的CMOS接收器,具有DVF,自适应带宽前端以及自动调节的四个正性异型解体器将被制造以实现此目标。此外,将开发具有宽范围电子电压控制的振荡器(VCO)调整的基于光相锁定环(OPLL)的载流子恢复方案。应用所提出的技术将彻底改变数据中心和高性能计算系统的未来,因为它能够提供低延迟互连而无需错误编码。该项目将涉及一个由22名得克萨斯A&M大学(TAMU)学生和3-4个国家钟大学(NCHU)学生组成的跨学科团队。将使用两个高级CMOS过程,一个硅光子过程和定制的薄膜TF-LN集成电路来实现两组原型。项目外展活动包括交流和访问活动,在关键IC设计阶段,TAMU和NCHU学生在现场进行面对面的工作,还参加联合研讨会,通过工程学的丰富经验(E3)计划与高中老师的互动,并通过火花向PK-12学生介绍基本研究概念!程序。项目结果将通过包含在课程大纲和网站上的题为“连贯的光学系统”,开发学术界和行业的在线模块的开发以及在国家和国际期刊和会议上的出版物中广泛传播。该奖项反映了NSF的法定任务,并通过评估商标来评估支持者,并予以评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Palermo其他文献

Influence of soil hydraulic parameters on bulb size for surface and buried emitters
  • DOI:
    10.1016/j.agwat.2024.108756
  • 发表时间:
    2024-04-30
  • 期刊:
  • 影响因子:
  • 作者:
    Giorgio Baiamonte;Vincenzo Alagna;Dario Autovino;Massimo Iovino;Samuel Palermo;Girolamo Vaccaro;Vincenzo Bagarello
  • 通讯作者:
    Vincenzo Bagarello

Samuel Palermo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Palermo', 18)}}的其他基金

EARS: A Wideband Frequency-Agile Silicon Photonic mm-Wave Receiver with Automatic Jammer Suppression via Rapidly Reconfigurable Optical Notch Filters
EARS:宽带频率捷变硅光子毫米波接收器,通过快速可重构光学陷波滤波器实现自动干扰抑制
  • 批准号:
    1547432
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Process, Voltage, and Temperature (PVT)-Tolerant CMOS Photonic Interconnect Transceiver Architectures
职业:耐工艺、电压和温度 (PVT) 的 CMOS 光子互连收发器架构
  • 批准号:
    1254830
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Advanced Modeling and Design of High-Performance ADC-Based Serial Links
基于高性能 ADC 串行链路的高级建模和设计
  • 批准号:
    1202508
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

基于高通量筛选技术理性设计开发高产花姜酮细胞工厂的研究
  • 批准号:
    22308167
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
3D打印工厂社群建模及其客户化大批量群智生产机理与方法
  • 批准号:
    52375512
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高产橡胶单体月桂烯的大肠杆菌细胞工厂构建
  • 批准号:
    32300066
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
半理性设计RNA聚合酶提高微生物细胞工厂生产性能
  • 批准号:
    32371489
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
光甘草定合成代谢途径的解析及酵母细胞工厂的构建
  • 批准号:
    32371485
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Molecular mechanisms underlying heme transport at the blood-brain barrier and its role in angiogenesis
血红素在血脑屏障转运的分子机制及其在血管生成中的作用
  • 批准号:
    10572752
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Development of novel human Fab probes for PET imaging of macrophages
开发用于巨噬细胞 PET 成像的新型人类 Fab 探针
  • 批准号:
    10461963
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
Development of novel human Fab probes for PET imaging of macrophages
开发用于巨噬细胞 PET 成像的新型人类 Fab 探针
  • 批准号:
    10277823
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
Development of novel human Fab probes for PET imaging of macrophages
开发用于巨噬细胞 PET 成像的新型人类 Fab 探针
  • 批准号:
    10884038
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
Measuring multiprotein assemblies that drive biological signals
测量驱动生物信号的多蛋白组装体
  • 批准号:
    10408708
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了