CAREER: Fundamental Investigation of Surface Fatigue Crack Initiation Mechanisms in Nanocrystalline FCC Metals

职业:纳米晶 FCC 金属表面疲劳裂纹萌生机制的基础研究

基本信息

  • 批准号:
    1255046
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-05-15 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:The overarching objective of this CAREER proposal is to identify the surface fatigue crack initiation mechanisms in nanocrystalline face-centered-cubic metals as a function of three material parameters (grain size, generalized stacking fault energy curve, oxidation behavior) and three loading factors (maximum plastic strain, frequency, environment); Nanocrystalline metals (grain size 100 nm) exhibit extraordinary mechanical properties and can combine ultra-high strength with considerable ductility. However, there is so far little quantitative, mechanistic-based understanding of their fatigue properties, such as the observed improved fatigue limit compared to their coarse grained counterparts (grain size 1 micrometers). Accordingly, this proposal seeks to monitor cyclic plasticity and measure initiation fatigue life on nanocrystalline face-centered-cubic nanobeams tested with a state-of-the-art MEMS device, for Al, Cu, Ni, and Au, as a function of three loading factors. In addition, this proposal seeks to identify the fatigue crack initiation mechanisms using transmission electron microscopy (TEM) observations, and whenever possible, establish relevant statistics of the operating mechanisms (such as frequency of occurrence) as a function of the aforementioned experimental parameters. Particularly, quantitative in-situ TEM fatigue testing will be performed to observe fatigue damage accumulation during cyclic loading. The proposed research offers original contributions to obtain mechanistic insight into the length-scale effects in fatigue processes. Particularly, this research program is expected to yield a mechanistic model linking the characteristics of cyclic plasticity (including, importantly, irreversibility mechanisms) to surface fatigue crack initiation in nanocrystalline face-centered-cubic metals. Such a model can provide a scientific basis for predicting the fatigue behavior of this class of materials. NON-TECHNICAL SUMMARY:Nanocrystalline metals are a promising class of ultra-strong materials. The reasons for the increase in strength due to decreasing grain size are fairly well understood, and several plastic deformation mechanisms have been identified to operate in this grain size regime. However, there is currently no satisfying model linking the plastic deformation mechanisms under cyclic loading and the resulting fatigue degradation properties of nanocrystalline metals. This proposal seeks to investigate the governing fatigue mechanisms of nanocrystalline metals using a state-of-the-art experimental technique, and to use this understanding to promote research and teaching in the fields of Science, Technology, Engineering, and Mathematics to high school students and teachers. Particularly, the PI will create a summer enrichment program, entitled FAMED (Failure Analysis for Mechanical Engineering Detectives), targeted for high school students, that will involve high school teachers, graduate and undergraduate students to develop and implement it. During the one-week-long program, the students will learn about the fundamental science related to the failure of materials in the form of short lectures and hands-on demos. They will also have a chance to act as failure analysis experts in idealized litigation cases whose outcome depends on the correct analysis of a failed object.
技术总结:本CAREER提案的首要目标是确定纳米晶面心立方金属的表面疲劳裂纹萌生机制,作为三个材料参数(晶粒尺寸、广义堆垛层错能曲线、氧化行为)和三个加载因素(最大塑性应变、频率、环境)的函数;纳米晶金属(晶粒尺寸100 nm)具有非凡的机械性能,可以将联合收割机超高强度与相当大的延展性结合起来。然而,到目前为止,很少有定量的,基于机械的理解,他们的疲劳性能,如观察到的改善疲劳极限相比,其粗粒对应物(晶粒尺寸1微米)。因此,该建议旨在监测循环塑性和测量初始疲劳寿命的纳米晶面心立方纳米梁测试与一个国家的最先进的MEMS设备,铝,铜,镍,和Au,作为三个加载因子的函数。此外,该提案旨在使用透射电子显微镜(TEM)观察来识别疲劳裂纹萌生机制,并尽可能建立作为上述实验参数的函数的操作机制(如发生频率)的相关统计数据。特别是,将进行定量原位TEM疲劳试验,以观察循环加载期间的疲劳损伤累积。拟议的研究提供了原始的贡献,以获得机械洞察疲劳过程中的长度尺度效应。特别是,这项研究计划预计将产生一个机械模型连接的特点,循环塑性(包括,重要的是,不可逆机制)的表面疲劳裂纹萌生纳米晶面心立方金属。该模型可为预测该类材料的疲劳行为提供科学依据。非技术总结:纳米晶体金属是一类有前途的超强材料。由于晶粒尺寸减小而导致强度增加的原因是相当好理解的,并且已经确定了几种塑性变形机制在该晶粒尺寸范围内起作用。然而,目前还没有令人满意的模型连接在循环载荷下的塑性变形机制和由此产生的疲劳退化性能的纳米晶金属。该提案旨在使用最先进的实验技术研究纳米晶金属的疲劳机制,并利用这种理解促进科学,技术,工程和数学领域的研究和教学,以高中学生和教师。特别是,PI将针对高中生开设一个名为FAMED(Failure Analysis for Mechanical Engineering Detectives)的暑期课程,由高中教师、研究生和本科生共同开发和实施。在为期一周的课程中,学生们将通过简短的讲座和实践演示的形式了解与材料失效相关的基础科学。他们还将有机会在理想化的诉讼案件中担任故障分析专家,其结果取决于对故障对象的正确分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olivier Pierron其他文献

Understanding and quantifying electron beam effects during emin situ/em TEM nanomechanical tensile testing on metal thin films
  • DOI:
    10.1016/j.actamat.2021.117441
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Sandra Stangebye;Yin Zhang;Saurabh Gupta;Ting Zhu;Olivier Pierron;Josh Kacher
  • 通讯作者:
    Josh Kacher

Olivier Pierron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olivier Pierron', 18)}}的其他基金

Abnormal grain growth in ultrafine grained metals under high cycle loading
高循环载荷下超细晶粒金属的异常晶粒生长
  • 批准号:
    2224372
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Experimental and Computational Statistical Investigation of Microstructurally Small Fatigue Crack Growth in Nickel Microbeams
镍微梁微观结构小疲劳裂纹扩展的实验和计算统计研究
  • 批准号:
    1562499
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
49th Annual Technical Meeting of Society of Engineering Science; Atlanta, Georgia; 10-12 October 2012; Support for Undergraduate and Graduate Student Presentation Competition
第49届工程科学学会技术年会;
  • 批准号:
    1203111
  • 财政年份:
    2012
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
EAGER: Investigation of Environmental Effects on the Fatigue Degradation Properties in Metallic Nanostructures
EAGER:环境对金属纳米结构疲劳降解性能影响的研究
  • 批准号:
    0952641
  • 财政年份:
    2009
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Fabrication and Thermomechanical Characterization of NiTi Shape Memory Alloy Nanowires
NiTi 形状记忆合金纳米线的制备和热机械表征
  • 批准号:
    0825435
  • 财政年份:
    2008
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似海外基金

GOALI: Fundamental Investigation of Constrained Cutting for High Performance Machining of Difficult-to-Cut Materials
GOALI:难切削材料高性能加工约束切削的基础研究
  • 批准号:
    2323120
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: Fundamental investigation of twin boundary engineering through cyclic cross-phase-boundary thermomechanical processing
职业:通过循环跨相边界热机械加工对孪晶边界工程进行基础研究
  • 批准号:
    2240125
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Electrophysiological Investigation of the Fundamental Neural Signature of Empathic Processing
共情处理的基本神经特征的电生理学研究
  • 批准号:
    569559-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
ERI: A Fundamental Investigation of the Effectiveness of Cathode Regeneration Process for Spent Lithium Ion Batteries
ERI:废旧锂离子电池阴极再生过程有效性的基础研究
  • 批准号:
    2138553
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Fundamental Investigation of Novel Bark-Based Lignocellulosic Nanofibrils for Composite Applications
用于复合材料应用的新型树皮木质纤维素纳米原纤维的基础研究
  • 批准号:
    RGPIN-2017-06737
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamental investigation into Japanese language education for the equal participation of linguistic and cultural minorities in Japanese society
为促进语言和文化少数群体平等参与日本社会而进行的日语教育的基础调查
  • 批准号:
    22K00666
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Fundamental Investigation of the Wave Nature of Lattice Thermal Transport
职业:晶格热传输波性质的基础研究
  • 批准号:
    2047109
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Investigation of fundamental properties of intermetallic compounds for novel interconnection materials
新型互连材料金属间化合物基本性质的研究
  • 批准号:
    21H04605
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Fundamental Investigation of Novel Bark-Based Lignocellulosic Nanofibrils for Composite Applications
用于复合材料应用的新型树皮木质纤维素纳米原纤维的基础研究
  • 批准号:
    RGPIN-2017-06737
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation into the Fundamental Structure, Bonding, and Reactivity of Compounds Featuring Terminal Pnictogen-Pnictogen Multiple Bonds
研究具有末端磷元素-磷元素多重键的化合物的基本结构、成键和反应性
  • 批准号:
    546014-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了