Experimental and Computational Statistical Investigation of Microstructurally Small Fatigue Crack Growth in Nickel Microbeams

镍微梁微观结构小疲劳裂纹扩展的实验和计算统计研究

基本信息

  • 批准号:
    1562499
  • 负责人:
  • 金额:
    $ 48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

This award supports fundamental research to perform small scale tests that quantify the crack growth rate in metals within grains and computational simulations of comparable spatial resolutions, yielding unprecedented level of integration. The assessment of the structural health of components and structures usually requires understanding their mechanical response under periodic repetitive loads. Under these conditions, the so-called fatigue cracks initiate and propagate, and they may lead to catastrophic failures. The need for cost-efficient research that prevent fatigue failures has pushed towards integrated computational materials engineering approaches as a means to improve national competitiveness. The understanding of the interaction between cracks and material structure improves the safety assessments of structural components by increasing confidence on response predictions and reducing unnecessary conservatism. In addition, planned outreach activities are designed to create unique opportunities to promote motivation, learning and academic success in the STEM fields for high school students.The research will unravel the parameters that influence the shape and intensity of the crack growth rates within grains. We research will follow a truly integrated microstructure-sensitive fatigue approach for nickel that combines 3-dimensional crystal plasticity models and a novel in situ scanning electron microscope microresonator-based experimental technique. The experiments will characterize the early growth of microstructural small cracks in nickel microbeams, yielding critical results such as the morphology of grains that nucleate cracks, crack growth rates, and 3-dimensional topography of the microstructural small cracks. The measured initial crack growth rates will be employed to calibrate the computational fatigue model, both in vacuum and air. The calibrated simulations will provide insight into the parameters that dominate crack growth, including sub-surface microstructural attributes. Thanks to the high throughput experimental technique, a statistically significant analysis will be carried by comparing a large number of experimental and computational realizations (crack length vs number of cycles), which will identify sources of epistemic uncertainty. The results have the potential to reshape the current understanding of the synergy between cracks and microstructure.
该奖项支持基础研究,以进行小规模测试,量化晶粒内金属的裂纹增长率和可比空间分辨率的计算模拟,从而产生前所未有的集成水平。构件和结构的结构健康评估通常需要了解它们在周期性重复载荷下的力学响应。在这些条件下,所谓的疲劳裂纹开始并扩展,并且它们可能导致灾难性故障。对防止疲劳失效的成本效益研究的需求推动了综合计算材料工程方法作为提高国家竞争力的手段。裂纹和材料结构之间的相互作用的理解,提高响应预测的信心,减少不必要的保守性,提高了结构部件的安全评估。此外,计划中的外展活动旨在为高中生创造独特的机会,以促进他们在STEM领域的动机,学习和学术成功。该研究将揭示影响晶粒内裂纹增长率形状和强度的参数。我们的研究将遵循一种真正集成的镍微观结构敏感疲劳方法,该方法结合了三维晶体塑性模型和一种新的基于原位扫描电子显微镜微谐振器的实验技术。实验将表征镍微梁中微结构小裂纹的早期生长,产生关键结果,如成核裂纹的晶粒形态、裂纹生长速率和微结构小裂纹的三维形貌。测量的初始裂纹扩展速率将被用来校准计算疲劳模型,在真空和空气中。校准的模拟将提供对主导裂纹生长的参数的深入了解,包括亚表面微观结构属性。由于高通量的实验技术,统计上显着的分析将进行比较大量的实验和计算实现(裂纹长度与循环数),这将确定来源的认识不确定性。这些结果有可能重塑目前对裂纹和微观结构之间协同作用的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olivier Pierron其他文献

Understanding and quantifying electron beam effects during emin situ/em TEM nanomechanical tensile testing on metal thin films
  • DOI:
    10.1016/j.actamat.2021.117441
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Sandra Stangebye;Yin Zhang;Saurabh Gupta;Ting Zhu;Olivier Pierron;Josh Kacher
  • 通讯作者:
    Josh Kacher

Olivier Pierron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olivier Pierron', 18)}}的其他基金

Abnormal grain growth in ultrafine grained metals under high cycle loading
高循环载荷下超细晶粒金属的异常晶粒生长
  • 批准号:
    2224372
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
CAREER: Fundamental Investigation of Surface Fatigue Crack Initiation Mechanisms in Nanocrystalline FCC Metals
职业:纳米晶 FCC 金属表面疲劳裂纹萌生机制的基础研究
  • 批准号:
    1255046
  • 财政年份:
    2013
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
49th Annual Technical Meeting of Society of Engineering Science; Atlanta, Georgia; 10-12 October 2012; Support for Undergraduate and Graduate Student Presentation Competition
第49届工程科学学会技术年会;
  • 批准号:
    1203111
  • 财政年份:
    2012
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
EAGER: Investigation of Environmental Effects on the Fatigue Degradation Properties in Metallic Nanostructures
EAGER:环境对金属纳米结构疲劳降解性能影响的研究
  • 批准号:
    0952641
  • 财政年份:
    2009
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Fabrication and Thermomechanical Characterization of NiTi Shape Memory Alloy Nanowires
NiTi 形状记忆合金纳米线的制备和热机械表征
  • 批准号:
    0825435
  • 财政年份:
    2008
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
  • 批准号:
    2347177
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
  • 批准号:
    2242084
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
  • 批准号:
    2242085
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Conference: Advances in Statistical and Computational Methods for Analysis of Biomedical, Genetic, and Omics Data
会议:生物医学、遗传和组学数据分析的统计和计算方法的进展
  • 批准号:
    2232547
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
New statistical and computational tools for optimization of planarian behavioral chemical screens
用于优化涡虫行为化学筛选的新统计和计算工具
  • 批准号:
    10658688
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
Developing computational, statistical and machine learning methods to uncover biological mechanisms of complex phenotypes
开发计算、统计和机器学习方法来揭示复杂表型的生物学机制
  • 批准号:
    RGPIN-2021-04062
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Methods and Computational Tools for Marine Animal Movement, Distribution and Population Size
海洋动物运动、分布和种群规模的统计方法和计算工具
  • 批准号:
    RGPIN-2019-05688
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Grants Program - Individual
CORE 1/2: INIA Stress and Chronic Alcohol Interactions: Computational and Statistical Analysis Core (CSAC)
CORE 1/2:INIA 压力和慢性酒精相互作用:计算和统计分析核心 (CSAC)
  • 批准号:
    10411629
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
Statistical and Computational Tools for Analyzing High-Dimensional Heterogeneous Data
用于分析高维异构数据的统计和计算工具
  • 批准号:
    2210907
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Bridging Statistical Hypothesis Tests and Deep Learning for Reliability and Computational Efficiency
连接统计假设检验和深度学习以提高可靠性和计算效率
  • 批准号:
    2134037
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了