CAREER: Sparsity-aware Sampling Theorems and Applications
职业:稀疏感知采样定理和应用
基本信息
- 批准号:1255631
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many signals of interest in data analysis have lower-dimensional structure than their ambient dimension suggests. Exploiting this latent structure in sampling and reconstruction strategies can dramatically increase algorithmic robustness to both noise and missing data. The theory of compressed sensing shows that if a signal of interest is sparse --- that is, well-approximated by some small subset of a dictionary of basis elements, then the signal can be acquired from a reduced number of measurements and reconstructed using efficient convex programming techniques. However, current compressed sensing theory is limitedlargely to finite-dimensional, well-conditioned, and uniformly bounded dictionaries, and these restrictions limit the scope of applications. Using notions such as variable-density and weighted sparsity, the investigator and her colleagues aim to develop a range of structure-dependent sampling theorems that merge finite-dimensional sparsity constraints with infinite-dimensional smoothness constraints, and which naturally extend the compressed sensing methodology to infinite-dimensional and unbounded function systems. As a related goal of this proposal, the investigator has teamed up with professors in computer science and electrical engineering at UT Austin to develop an interdisciplinary statistical signal processing seminar series. The investigator has also recently established the first Association for Women in Mathematics student chapter at UT Austin in order to foster the advancement of women in mathematics.Broadly speaking, this proposal puts forth theoretical tools that can be used to design strategies for acquiring high-dimensional data as efficiently as possible, given any known lower-dimensional structure of the data and within the framework of the acquisition process at hand. Magnetic Resonance Imaging (MRI) is one driving application. Here, one would like to reduce the MRI scan time as much as possible while still acquiring a clear image of the brain, neck, or other internal structure. By exploiting the underlying structure of natural images, such as the localization of information content of the image to boundaries between different materials in the brain, MRI scanning technology can become significantly cheaper and faster, and preliminary experiments by the investigator and collaborators suggest that the sampling strategies put forth in this proposal have the potential to speed up MRI scan timestenfold. Uncertainty Quantification is another application of the proposed research. Here, one is interested in analyzing the sensitivity of high-dimensional nonlinear models to small changes in input parameters. Applications range from the design of civil infrastructure to be robust in the face of extreme climate, to the assessment of the stability for climate models with respect to perturbations in initial weather conditions. Generally speaking, Uncertainty Quantification involves repeatedly perturbing the initial conditions of the model at hand, simulating the model at each of these perturbations, and analyzing the resulting output statistics. Since such simulations are expensive for high-dimensional nonlinear models, one would like to derive strategies for simulating perturbed input parameters so as to gain as much information about the model from as few simulations as possible.
在数据分析中,许多感兴趣的信号具有比其环境维度所暗示的更低维的结构。 在采样和重建策略中利用这种潜在结构可以显着提高算法对噪声和丢失数据的鲁棒性。 压缩感知理论表明,如果感兴趣的信号是稀疏的-也就是说,很好地近似由基元字典的一些小的子集,那么信号可以从减少数量的测量和重建使用有效的凸规划技术。 然而,目前的压缩感知理论主要局限于有限维、良好条件和一致有界的字典,这些限制限制了压缩感知的应用范围。利用变密度和加权稀疏等概念,研究人员和她的同事旨在开发一系列结构相关的采样定理,将有限维稀疏性约束与无限维平滑性约束合并,并将压缩感知方法自然扩展到无限维和无界函数系统。 作为这项提案的相关目标,研究人员与UT Austin的计算机科学和电气工程教授合作,开发了一个跨学科的统计信号处理研讨会系列。 研究人员最近还成立了第一个协会的妇女在数学学生章在德州奥斯汀,以促进妇女在mathematics.Broadly的进步,这一建议提出了理论工具,可用于设计策略,以获取高维数据尽可能有效地,给定任何已知的低维结构的数据和在手头的收购过程的框架内。磁共振成像(MRI)是一种驱动应用。 这里,人们希望尽可能地减少MRI扫描时间,同时仍然获取大脑、颈部或其他内部结构的清晰图像。通过利用自然图像的底层结构,例如将图像的信息内容定位到大脑中不同材料之间的边界,MRI扫描技术可以变得更加便宜和快速,研究人员和合作者的初步实验表明,该提案中提出的采样策略有可能将MRI扫描时间加快十倍。不确定性量化是所提出的研究的另一个应用。 这里,人们感兴趣的是分析高维非线性模型对输入参数微小变化的敏感性。其应用范围从设计在极端气候下坚固耐用的民用基础设施,到评估气候模型在初始天气条件扰动下的稳定性。一般来说,不确定性量化涉及反复扰动模型的初始条件,在每个扰动下模拟模型,并分析结果输出统计。 由于这样的模拟是昂贵的高维非线性模型,人们希望得到的策略,用于模拟扰动输入参数,以便获得尽可能多的信息,从尽可能少的模拟模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Ward其他文献
Patient-Specific Heart Constraint: A Tool for Optimization and Evaluation of Mean Heart Dose in Breast Cancer Patients
- DOI:
10.1016/j.prro.2020.10.005 - 发表时间:
2021-03-01 - 期刊:
- 影响因子:
- 作者:
Rachel Ward;Katrina West;Drew Latty;Rachael Beldham-Collins;Dan Jia;Wei Wang;Shamira Cross;Val Gebski;Verity Ahern;Kirsty Stuart - 通讯作者:
Kirsty Stuart
Police peer supporters in a domestic abuse-specific peer support initiative: Motivations, experiences and challenges
警察同伴支持者参与针对家庭虐待的同伴支持倡议:动机、经验和挑战
- DOI:
10.1177/14613557241244607 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Rachel Ward;Liliana Belkin - 通讯作者:
Liliana Belkin
Prenatal fruit juice exposure enhances memory consolidation in male post-weanling Sprague-Dawley rats
产前果汁暴露增强雄性断奶后斯普拉格-道利大鼠的记忆巩固
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3.7
- 作者:
Rachel Ward;C. Scavuzzo;P. Mandhane;F. Bolduc;C. Dickson - 通讯作者:
C. Dickson
The Benefit of Virtual Outpatient Rehabilitative Care: a Pilot Study
- DOI:
10.1016/j.apmr.2022.08.879 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:
- 作者:
Rebekah Harris;Emma Fitzelle-Jones;Rachel Ward;Elisa Ogawa;Catherine Kelly;Mariam Abutaleb;Thomas Travison;Jonathan Bean - 通讯作者:
Jonathan Bean
ADHERENCE TO LIPID-LOWERING THERAPY IS ASSOCIATED WITH LESS HOSPITALIZATION AND DEATH IN US VETERANS WITH ATHEROSCLEROTIC CARDIOVASCULAR DISEASE
在美国患有动脉粥样硬化性心血管疾病的退伍军人中,坚持降脂治疗与更少的住院和死亡相关。
- DOI:
10.1016/s0735-1097(25)01096-4 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:22.300
- 作者:
Roman Marciniak;Rachel Ward;Helen Wellman;Melissa Young;Nedim Yel;Sean McElligott;Xiaoli Niu;David Gagnon;Luc Djousse;J. Michael Gaziano - 通讯作者:
J. Michael Gaziano
Rachel Ward的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Ward', 18)}}的其他基金
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
- 批准号:
2208340 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
相似海外基金
OAC Core: Improving Data Integrity for HPC Datasets using Sparsity Profile
OAC 核心:使用稀疏性配置文件提高 HPC 数据集的数据完整性
- 批准号:
2312982 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: Learning and forecasting high-dimensional extremes: sparsity, causality, privacy
协作研究:学习和预测高维极端情况:稀疏性、因果关系、隐私
- 批准号:
2310974 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
SHF: Small: Domain-Specific FPGAs to Accelerate Unrolled DNNs with Fine-Grained Unstructured Sparsity and Mixed Precision
SHF:小型:特定领域 FPGA 加速具有细粒度非结构化稀疏性和混合精度的展开 DNN
- 批准号:
2303626 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Topic-Oriented Public Sentiment Assessment via Social Media under Information Uncertainty and Sparsity
信息不确定性和稀疏性下社交媒体主题舆情评估
- 批准号:
23K16954 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Robustness, Active Learning, Sparsity, and Fairness in Classification
职业:分类中的鲁棒性、主动学习、稀疏性和公平性
- 批准号:
2239376 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
CRII: CNS: Exploring Data and Model Sparsity in Deep Learning Systems using Graphs
CRII:CNS:使用图探索深度学习系统中的数据和模型稀疏性
- 批准号:
2245849 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
CMOS+X: Retinomorphic Infrared Imager with Sparsity-adaptive Machine-Learning Accelerator
CMOS X:具有稀疏自适应机器学习加速器的视网膜成像红外成像仪
- 批准号:
2318990 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: Learning and forecasting high-dimensional extremes: sparsity, causality, privacy
协作研究:学习和预测高维极端情况:稀疏性、因果关系、隐私
- 批准号:
2310973 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Sparsity-Based Autonomous Adaptability in Circuit and Systems Utilizing Compressed Sensing
利用压缩感知的电路和系统中基于稀疏性的自主适应性
- 批准号:
23K18463 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Frames as dictionaries in inverse problems: Recovery guarantees for structured sparsity, unstructured environments, and symmetry-group identification
逆问题中的框架作为字典:结构化稀疏性、非结构化环境和对称群识别的恢复保证
- 批准号:
2308152 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant