CAREER: Robustness, Active Learning, Sparsity, and Fairness in Classification

职业:分类中的鲁棒性、主动学习、稀疏性和公平性

基本信息

  • 批准号:
    2239376
  • 负责人:
  • 金额:
    $ 59.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Learning and making accurate inferences from complex data is a core task in modern data analytics. Over the past few decades, a large volume of efficient algorithms has been developed and tested in a broad range of science and engineering problems. However, rigorous analysis of these algorithms often relies on simplified assumptions about the structure of the data, which may not capture the real characteristics. The project aims to go beyond standard theoretical frameworks by developing new theories and algorithms to address pressing challenges arising from contemporary applications, such as adversarial data contamination. In particular, this project will study and lay solid theoretical foundations for the classification problem, which plays a fundamental role in machine learning. A crucial educational component of the project involves the development of a new undergraduate program in artificial intelligence and machine learning that has the potential to inspire a transformation of nationwide STEM education. Furthermore, the principal investigator will continue to mentor undergraduate and graduate students.The project will address several fundamental questions in classification for which there is a large gap in our current understanding. A wide range of modern tools will be leveraged to design new algorithms that can tolerate adversarial corruptions in the data, mitigate data annotation costs, circumvent the curse of high dimensionality, and fortify models with fairness guarantees. Complementary to the algorithmic results, the project will also develop information-theoretic and statistical-query lower bounds to broaden the understanding of fundamental limits posed by the practical constraints. The comprehensive investigation of these problems and their interplay will lead to new analytic and algorithmic tools, enrich various areas (such as learning theory, statistics, and optimization), and build new bridges between them.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从复杂数据中学习和做出准确的推断是现代数据分析的核心任务。在过去的几十年里,大量的高效算法已经被开发出来,并在广泛的科学和工程问题中进行了测试。然而,对这些算法的严格分析通常依赖于对数据结构的简化假设,这可能无法捕获真实的特征。该项目旨在通过开发新的理论和算法来超越标准的理论框架,以解决当代应用中出现的紧迫挑战,例如对抗性数据污染。特别是,本项目将研究并奠定坚实的理论基础,分类问题,这在机器学习中起着基础性的作用。该项目的一个重要教育组成部分涉及开发一个新的人工智能和机器学习本科课程,该课程有可能激发全国STEM教育的转型。此外,首席研究员将继续指导本科生和研究生。该项目将解决分类中的几个基本问题,这些问题在我们目前的理解中存在很大差距。将利用各种现代工具来设计新的算法,这些算法可以容忍数据中的对抗性破坏,降低数据注释成本,规避高维灾难,并通过公平性保证来强化模型。作为对算法结果的补充,该项目还将开发信息理论和实践查询下限,以扩大对实际约束所造成的基本限制的理解。对这些问题及其相互作用的全面调查将导致新的分析和算法工具,丰富各个领域(如学习理论,统计和优化),并在它们之间建立新的桥梁。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jie Shen其他文献

Incidental Detection of Ossifying Fibroma of the Frontal Sinus on 99mTc-MDP Bone Scan.
99mTc-MDP 骨扫描偶然检测到额窦骨化纤维瘤。
  • DOI:
    10.1097/rlu.0000000000001029
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Ruiguo Zhang;Jun;S. Xia;Jie Shen;Jian Tan
  • 通讯作者:
    Jian Tan
Correlation between the methylation of SULF2 and WRN promoter and the irinotecan chemosensitivity in gastric cancer
SULF2和WRN启动子甲基化与胃癌伊立替康化疗敏感性的相关性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Lin Wang;Li Xie;Jun Wang;Jie Shen;Baorui Liu
  • 通讯作者:
    Baorui Liu
Cysteine 397 plays important roles in the folding of the neuron-restricted silencer factor/RE1-silencing transcription factor.
半胱氨酸 397 在神经元限制性沉默因子/RE1 沉默转录因子的折叠中发挥重要作用。
Flexural properties of wooden nail friction welding of laminated timber
层合木木钉摩擦焊的弯曲性能
  • DOI:
    10.15376/biores.18.1.1166-1176
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Xudong Zhu;Yingying Xue;Pengfei Qi;Qian Lan;Liang Qian;Jie Shen;Ying Gao;Jiajia Li;Changtong Mei;Shengcai Li
  • 通讯作者:
    Shengcai Li
18 – Esophageal Carcinoma
18 – 食道癌
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Q. Zhan;Luhua Wang;Yong;Yun;Jing Jiang;Jing Fan;Jing;Jie Shen
  • 通讯作者:
    Jie Shen

Jie Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jie Shen', 18)}}的其他基金

CRII: III: Efficient and Robust Statistical Estimation from Nonlinear Compressed Measurements
CRII:III:通过非线性压缩测量进行高效且稳健的统计估计
  • 批准号:
    1948133
  • 财政年份:
    2020
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Standard Grant
Design and Analysis of Highly Efficient Algorithms for Complex Nonlinear Systems
复杂非线性系统高效算法的设计与分析
  • 批准号:
    2012585
  • 财政年份:
    2020
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Continuing Grant
International Conference on Current Trends and Challenges in Numerical Solution of Partial Differential Equations
偏微分方程数值解的当前趋势和挑战国际会议
  • 批准号:
    1722535
  • 财政年份:
    2017
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Efficient, Stable and Accurate Numerical Algorithms for a class of Gradient Flow Systems and their Applications
合作研究:一类梯度流系统高效、稳定、准确的数值算法及其应用
  • 批准号:
    1720440
  • 财政年份:
    2017
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Standard Grant
Fast spectral methods and their applications
快速光谱方法及其应用
  • 批准号:
    1620262
  • 财政年份:
    2016
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Continuing Grant
I-Corps: Cell Failure Analysis of Lithium-ion Batteries
I-Corps:锂离子电池的电池失效分析
  • 批准号:
    1445355
  • 财政年份:
    2014
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Phase-field models, algorithms and simulations for multiphase complex fluids
合作研究:多相复杂流体的相场模型、算法和模拟
  • 批准号:
    1419053
  • 财政年份:
    2014
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Standard Grant
Fast Spectral Methods and their Applications
快速谱方法及其应用
  • 批准号:
    1217066
  • 财政年份:
    2012
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Continuing Grant
Fast Spectral-Galerkin Methods and their Applications
快速谱伽辽金方法及其应用
  • 批准号:
    0915066
  • 财政年份:
    2009
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of an X-Ray Micro-Computed Tomography System for Evaluating Crack Evolution and Failure Characterization of Engineering Materials
MRI:获取 X 射线微计算机断层扫描系统,用于评估工程材料的裂纹演化和失效特征
  • 批准号:
    0721625
  • 财政年份:
    2007
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Standard Grant
A framework for evaluating and explaining the robustness of NLP models
评估和解释 NLP 模型稳健性的框架
  • 批准号:
    EP/X04162X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Research Grant
CAREER: Towards Fairness in the Real World under Generalization, Privacy and Robustness Challenges
职业:在泛化、隐私和稳健性挑战下实现现实世界的公平
  • 批准号:
    2339198
  • 财政年份:
    2024
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Continuing Grant
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
  • 批准号:
    2339381
  • 财政年份:
    2024
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Continuing Grant
OPUS: Robustness and complexity: how evolution builds precise traits from sloppy components
OPUS:稳健性和复杂性:进化如何从草率的组成部分构建精确的特征
  • 批准号:
    2325755
  • 财政年份:
    2024
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Standard Grant
Advancing plant synthetic gene circuit capability, robustness, and use
提高植物合成基因电路的能力、稳健性和使用
  • 批准号:
    DP240103385
  • 财政年份:
    2024
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Discovery Projects
Robustness-oriented and serviceable design of innovative modular buildings
创新模块化建筑的稳健性和实用性设计
  • 批准号:
    DP240101301
  • 财政年份:
    2024
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Discovery Projects
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335412
  • 财政年份:
    2024
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
  • 批准号:
    2319242
  • 财政年份:
    2023
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 59.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了