WIDER: EAGER: Documenting Instructional Practices in STEM Lecture Courses

更广泛:EAGER:记录 STEM 讲座课程中的教学实践

基本信息

  • 批准号:
    1256500
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-15 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

Though there are many critical junctures for improving STEM education, the first two years of undergraduate education are certainly among them. Undergraduates' first experience with university STEM courses typically takes place in large lecture courses. These courses are often criticized for focusing too much on providing information and too little on fostering scientific discussion, analysis, and reflection. Many would tie perceived inadequacies of large lecture courses with the high attrition rate that takes place in STEM majors in the first two years of undergraduate study, especially among underrepresented minority students. At UCI and elsewhere, there is a great deal of interest in improving lecture courses to foster greater scientific understanding and improve retention in the STEM disciplines. Practices that are considered particularly promising for accomplishing this include enhanced faculty-student interaction; enhanced peer interaction; greater attention to problem-solving; more opportunities for personalized learning; opportunities to receive and communicate information across diverse channels and modalities; and more data-based instruction, in which faculty evaluate the effects of their own teaching by gathering and weighing evidence. In this project a team of UCI faculty members in the School of Education and the School of Biological Sciences will carry out a systematic study of current instructional practice in large introductory STEM lecture courses at UCI. The goals are to (a) develop a comprehensive matrix for measuring instructional practices in higher education; (b) establish baseline data; (c) obtain a synoptic view of current STEM instruction; (d) promote synergy across departments and schools to conduct and share systematic evidence-based instructional research; and (e) prepare to apply for full-scale funding to support further efforts at strengthening evidence-based STEM education at UCI. The proposed study will take place among five large UCI schools that teach various disciplines within STEM: Biological Sciences, Engineering, Information and Computer Sciences, Physical Sciences, and Social Ecology. In each of these five schools, large introductory lower-division courses will be identified and six course/sections in each school will be selected for inclusion in the study. Purposeful sampling will ensure the broadest range of faculty participation, by professorial level, gender, and background. Data on current instructional practices in those classes will be gathered from three sources--live and video-taped observations of lectures, discussion sections, and lab sections; interviews with course instructors; and review of course syllabi and other materials--using rubrics that are designed to capture the relative presence or absence of the evidence-based and promising practices described above. Data analysis will focus on triangulation among these three sources to provide a broad and thorough overview of the extent to which evidence-based instructional practices are deployed in STEM lecture courses at UCI.
虽然改善STEM教育有许多关键时刻,但本科教育的前两年肯定是其中之一。本科生第一次接触大学STEM课程通常是在大型讲座课程中。这些课程经常被批评为过于注重提供信息,而对促进科学讨论,分析和反思的关注太少。许多人认为大型讲座课程的不足之处与本科学习前两年STEM专业的高流失率有关,特别是在代表性不足的少数民族学生中。 在UCI和其他地方,人们对改进讲座课程非常感兴趣,以促进更好的科学理解并提高STEM学科的保留率。被认为特别有希望实现这一目标的做法包括加强师生互动;加强同伴互动;更加关注解决问题;更多的个性化学习机会;通过不同渠道和模式接收和交流信息的机会;以及更多基于数据的教学,教师通过收集和权衡证据来评估自己的教学效果。 在这个项目中,教育学院和生物科学学院的UCI教师团队将在UCI的大型入门STEM讲座课程中对当前的教学实践进行系统研究。其目标是:(a)制定一个衡量高等教育教学实践的综合矩阵;(B)建立基线数据;(c)获得当前STEM教学的概况;(d)促进各部门和学校之间的协同作用,以开展和分享系统的循证教学研究;以及(e)准备申请全面拨款,以支持进一步加强UCI循证STEM教育的努力。 拟议的研究将在五所大型UCI学校中进行,这些学校教授STEM中的各种学科:生物科学,工程,信息和计算机科学,物理科学和社会生态学。在这五所学校中的每一所,将确定较低年级的大型入门课程,并在每所学校中选出六门课程/科,供纳入研究。有目的的抽样将确保最广泛的教师参与,由教授水平,性别和背景。这些班级目前的教学实践数据将从三个来源收集-现场和录像观察讲座,讨论部分和实验室部分;与课程讲师的访谈;以及课程大纲和其他材料的审查-使用旨在捕捉上述循证和有前途的做法的相对存在或不存在的标题。数据分析将集中在这三个来源之间的三角测量,以提供一个广泛和全面的概述,在何种程度上基于证据的教学实践部署在干在UCI讲座课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Warschauer其他文献

The benefits and caveats of using clickstream data to understand student self-regulatory behaviors: opening the black box of learning processes
The affordances and contradictions of AI-generated text for writers of english as a second or foreign language
对于作为第二语言或外语的英语作家来说,人工智能生成文本的可供性和矛盾之处
  • DOI:
    10.1016/j.jslw.2023.101071
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Mark Warschauer;Waverly Tseng;Soobin Yim;Thomas Webster;Sharin Jacob;Qian Du;Tamara Tate
  • 通讯作者:
    Tamara Tate
Can AI provide useful holistic essay scoring?
  • DOI:
    10.1016/j.caeai.2024.100255
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tamara P. Tate;Jacob Steiss;Drew Bailey;Steve Graham;Youngsun Moon;Daniel Ritchie;Waverly Tseng;Mark Warschauer
  • 通讯作者:
    Mark Warschauer
Broadening our concepts of universal access
  • DOI:
    10.1007/s10209-015-0417-0
  • 发表时间:
    2015-06-06
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Mark Warschauer;Veronica Ahumada Newhart
  • 通讯作者:
    Veronica Ahumada Newhart
“ChatGPT seems too good to be true”: College students’ use and perceptions of generative AI
  • DOI:
    10.1016/j.caeai.2024.100294
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Clare Baek;Tamara Tate;Mark Warschauer
  • 通讯作者:
    Mark Warschauer

Mark Warschauer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Warschauer', 18)}}的其他基金

Deepening Computational Thinking for English Learners by Integrating Community-Based Environmental Literacy
通过整合社区环境素养加深英语学习者的计算思维
  • 批准号:
    2317832
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Developing Conversational Videos to Support Children's STEM Learning and Engagement
开发对话视频以支持儿童的 STEM 学习和参与
  • 批准号:
    2115382
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Using Conversational Agents to Foster Preschool Children's Science Learning and Engagement from Interactive Science Videos
使用对话代理促进学龄前儿童的科学学习和互动科学视频的参与
  • 批准号:
    1906321
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Network of Grades 3-5 Educators for Computational Thinking for English Learners
3-5 年级英语学习者计算思维教育工作者协作网络
  • 批准号:
    1923136
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
MATH: EAGER: Online Collaborative Problem Solving in Remedial College Mathematics
数学:EAGER:补习大学数学中的在线协作问题解决
  • 批准号:
    1543986
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Investigating Virtual Learning Environments
调查虚拟学习环境
  • 批准号:
    1535300
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF RAPID: Interactive Science and Technology Instruction for English Learners
NSF RAPID:针对英语学习者的互动科学技术教学
  • 批准号:
    1053767
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
  • 批准号:
    2348836
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Accelerating decarbonization by representing catalysts with natural language
EAGER:通过用自然语言表示催化剂来加速脱碳
  • 批准号:
    2345734
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了