ABI Innovation: Gini-based methodologies to enhance network-scale transcriptome analysis in plants

ABI Innovation:基于基尼的方法增强植物网络规模转录组分析

基本信息

  • 批准号:
    1261830
  • 负责人:
  • 金额:
    $ 39.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

In biology, network techniques have been applied to interpret the interactions between genes, including the physical interactions of proteins and regulatory relationships between transcription factors and targets. Although numerous methods have been developed to infer a network from expression data, several computational challenges remain unsolved, such as, how to derive non-linear relationships between transcription factors and targets, how to properly decompose a network into individual sub-network modules, how to predict biologically significant genes via network-scale comparisons, how to integrate and use the heterogeneous forms of biological interaction data to facilitate network analysis, and how to seamlessly visualize a large-scale network for interactive data mining. To solve these problems, the primary goal of this project is to develop a software package - the Gini Network Analysis Toolkit (GNAT) that utilizes the Gini-based methodologies: a family of mathematical solutions that have been widely used in economics, physics, informatic networks, and social networks in analyzing non-normally distributed data. The core functional modules and algorithms in the GNAT include the use of supervised machine learning methods to infer transcriptional networks, the Gini correlation coefficient to derive non-linear regulatory relationships, the Gini regression analysis to decompose a time-series network, the Gini index to measure and compare the distributions of the network properties of modules and genes under different biological conditions, and eventually the discovery of biologically important genes with system perturbation and decision tree analysis. The PI will also develop a network explorer, BioNetscape, to efficiently organize and visualize the tremendous amount of network data generated from the GNAT using the k-core decomposition algorithm, Ajax technology and GPU (graphical processing unit) computing techniques. The GNAT will be implemented in R and organized as a streamlined workflow to compensate the shortcomings of the traditional gene-scale transcriptome analysis methods.The GNAT software will greatly facilitate the ongoing network development projects in plant research. The GNAT will be made available to be integrated into the iPlant Discovery Environment, The Arabidopsis Information Resource (TAIR), Plant Expression Database (PLEXdb) and other consortium databases to enhance the function of network analysis and gene discovery in plants. The GNAT will also be integrated into the Galaxy and GenePattern platforms to provide a user-friendly graphical interface. The source-code and R packages will be released into the public domain for broader use in plant, animal and microbial biology. To integrate research into education, the PI?s laboratory will develop a web-based Virtual Next Generation Sequencing Workshop for training biologists who are not specialists in bioinformatics to analyze genomic, epigenomic, transcriptomic and small RNA data. The workshop courseware is composed of teaching materials prepared in the PI's class, self-practice datasets and a virtual UNIX web-console for training biologists to analyze different types of next generation sequencing data with minimal requirements for programming skills. This project explicitly addresses cross-disciplinary research training at multiple levels that will encourage the participation of underrepresented groups in computer sciences and mathematics at the University of Arizona, who will work to answering biological questions. The students from the ASEMS (Arizona Science, Engineering, and Math Scholars) and IGERT programs at the University of Arizona will participate in the PI's team to develop the GNAT, BioNetscape and VNW, and use these tools in their research.
在生物学中,网络技术已被应用于解释基因之间的相互作用,包括蛋白质的物理相互作用和转录因子与靶标之间的调控关系。尽管已经开发了许多方法来从表达数据推断网络,但仍有几个计算挑战未解决,例如,如何导出转录因子和靶标之间的非线性关系,如何将网络适当地分解为各个子网络模块,如何通过网络规模比较预测生物学上重要的基因,如何整合和使用生物相互作用数据的异构形式,以促进网络分析,以及如何无缝地可视化一个大规模的网络交互式数据挖掘。为了解决这些问题,这个项目的主要目标是开发一个软件包-基尼网络分析工具包(GNAT),利用基尼为基础的方法:一个家庭的数学解决方案,已被广泛用于经济学,物理学,信息网络和社交网络在分析非正态分布的数据。GNAT中的核心功能模块和算法包括使用监督机器学习方法来推断转录网络,Gini相关系数来推导非线性调控关系,Gini回归分析来分解时间序列网络,Gini指数来测量和比较不同生物条件下模块和基因的网络属性分布,并最终通过系统扰动和决策树分析发现生物学上重要的基因。首席研究员亦会开发一个名为BioNetscape的网络浏览器,利用k核心分解算法、Ajax技术和GPU(图形处理器)计算技术,有效地组织和可视化GNAT产生的大量网络数据。GNAT将以R语言实现,并以简化的工作流程组织,以弥补传统基因级转录组分析方法的缺点。GNAT软件将极大地促进正在进行的植物研究网络开发项目。GNAT将被集成到iPlant Discovery Environment、The Arabidopsis Information Resource(TAIR)、Plant Expression Database(PLEXdb)和其他联盟数据库中,以增强植物网络分析和基因发现的功能。GNAT还将被纳入银河和GenePattern平台,以提供方便用户的图形界面。源代码和R软件包将被发布到公共领域,以便在植物,动物和微生物生物学中更广泛地使用。为了将研究融入教育,PI?的实验室将开发一个基于网络的虚拟下一代测序研讨会,用于培训非生物信息学专家的生物学家分析基因组、表观基因组、转录组和小RNA数据。工作坊的课件由PI课堂上准备的教学材料、自我练习数据集和虚拟UNIX网络控制台组成,用于培训生物学家分析不同类型的下一代测序数据,对编程技能的要求最低。该项目明确解决了多个层面的跨学科研究培训,这将鼓励亚利桑那大学计算机科学和数学领域代表性不足的群体参与,他们将致力于回答生物学问题。来自亚利桑那大学ASEMS(亚利桑那科学、工程和数学学者)和IGERT项目的学生将参加PI的团队,开发GNAT、BioNetscape和VNW,并在他们的研究中使用这些工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hao Zhang其他文献

南海トラフ地震の影響を受けるRCラーメン高架橋の強震動および津波による損傷確率の比較
南海海槽地震作用下RC刚构高架桥强地震动和海啸破坏概率比较
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Youhei Nomura;Hao Zhang;Taku Fujiwara;Han Gui and Takashi Akamatsu;望月野亜;桜庭拓也・二瓶泰雄・倉上由貴・入江美月;田中悠暉,川尻峻三,橋本聖,川口貴之,中村大,山下聡;萩田賢司,横関俊也;名波健吾,磯辺弘司,秋山充良,越村俊一
  • 通讯作者:
    名波健吾,磯辺弘司,秋山充良,越村俊一
Remèdes contenant de la vitamine k2 comme ingrédient actif
维生素 K2 成分活性成分的补充
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iwata Ozaki;Hao Zhang;Toshihiko Mizuta;Kyosuke Yamamoto
  • 通讯作者:
    Kyosuke Yamamoto
Object Pooling for Multimedia Event Detection and Evidence Localization
用于多媒体事件检测和证据本地化的对象池
Model updating for rotor-discs system and its application in dynamic coefficients identification of journal bearings
转子盘系统模型更新及其在轴颈轴承动态系数辨识中的应用
  • DOI:
    10.1016/j.measurement.2020.108645
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Yang Kang;Zizhen Qiu;Hao Zhang;Zhanqun Shi;Fengshou Gu
  • 通讯作者:
    Fengshou Gu
Photoexcited Chiral Copper Complex-Mediated Alkene E-Z Isomerization Enables Kinetic Resolution.
光激发手性铜配合物介导的烯烃 E-Z 异构化可实现动力学分辨率。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Zhang;Congcong Huang;Xiang-Ai Yuan;Shouyun Yu
  • 通讯作者:
    Shouyun Yu

Hao Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hao Zhang', 18)}}的其他基金

CAREER: Robot Reflection in Lifelong Adaptation
职业生涯:机器人在终生适应中的反思
  • 批准号:
    2308492
  • 财政年份:
    2022
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Continuing Grant
CAREER: Robot Reflection in Lifelong Adaptation
职业生涯:机器人在终生适应中的反思
  • 批准号:
    1942056
  • 财政年份:
    2020
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Continuing Grant
Spectroscopic photon localization microscopy for super-resolution molecular imaging
用于超分辨率分子成像的光谱光子定位显微镜
  • 批准号:
    1706642
  • 财政年份:
    2017
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
TRIPODS: UA-TRIPODS - Building Theoretical Foundations for Data Sciences
TRIPODS:UA-TRIPODS - 为数据科学奠定理论基础
  • 批准号:
    1740858
  • 财政年份:
    2017
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Continuing Grant
I-Corps: Opticent Health-Functional Imaging For Early Disease Detection.
I-Corps:用于早期疾病检测的光学健康功能成像。
  • 批准号:
    1507501
  • 财政年份:
    2015
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
IDBR: TYPE A: Directly Integratable Photoacoustic Microscopy with Established Optical Microscopy for Comprehensive Sub-cellular Biological Imaging
IDBR:A 型:直接集成光声显微镜与成熟的光学显微镜,用于全面的亚细胞生物成像
  • 批准号:
    1353952
  • 财政年份:
    2014
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Continuing Grant
Measuring plant available phosphorus to increase crop yields and minimise nutrient leaching
测量植物有效磷以提高作物产量并最大程度地减少养分流失
  • 批准号:
    NE/M016919/1
  • 财政年份:
    2014
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Research Grant
CAREER: Nonparametric Models Building, Estimation, and Selection with Applications to High Dimensional Data Mining
职业:非参数模型构建、估计和选择及其在高维数据挖掘中的应用
  • 批准号:
    1347844
  • 财政年份:
    2013
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Continuing Grant
Flexible Modeling for High-Dimensional Complex Data: Theory, Methodology, and Computation
高维复杂数据的灵活建模:理论、方法和计算
  • 批准号:
    1309507
  • 财政年份:
    2013
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Continuing Grant
A genetic dissection of traits required for sustainable water use in rice using Genome Wide Association Studies (GWAS)
利用全基因组关联研究 (GWAS) 对水稻可持续用水所需的性状进行遗传剖析
  • 批准号:
    BB/J002062/1
  • 财政年份:
    2012
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Research Grant

相似海外基金

Footwear Innovation to Improve Safety for Female Turf Sport Players (“FemFITS”)
鞋类创新可提高女性草地运动运动员的安全性 (“FemFITS”)
  • 批准号:
    10098494
  • 财政年份:
    2024
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Collaborative R&D
Innovation through AI
通过人工智能进行创新
  • 批准号:
    10102175
  • 财政年份:
    2024
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Collaborative R&D
Yorkshire and the Humber Policy Innovation Partnership
约克郡和汉伯政策创新伙伴关系
  • 批准号:
    ES/Z50239X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Research Grant
NSF Engines Development Award: Building an sustainable plastics innovation ecosystem in the Midwest (MN, IL)
NSF 引擎发展奖:在中西部(明尼苏达州、伊利诺伊州)建立可持续塑料创新生态系统
  • 批准号:
    2315247
  • 财政年份:
    2024
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Cooperative Agreement
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
  • 批准号:
    2348836
  • 财政年份:
    2024
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
ART: Research to Solutions, Building Translational Capacity in the Central Florida Innovation Ecosystem
ART:从研究到解决方案,在佛罗里达州中部创新生态系统中建设转化能力
  • 批准号:
    2331319
  • 财政年份:
    2024
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Cooperative Agreement
How the mushroom lost its gills: phylogenomics and population genetics of a morphological innovation in the fungal genus Lentinus
蘑菇如何失去鳃:香菇属真菌形态创新的系统基因组学和群体遗传学
  • 批准号:
    2333266
  • 财政年份:
    2024
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
  • 批准号:
    2333683
  • 财政年份:
    2024
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Continuing Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
  • 批准号:
    2333684
  • 财政年份:
    2024
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Continuing Grant
REU Site: Polymer Innovation for a Sustainable Future
REU 网站:聚合物创新打造可持续未来
  • 批准号:
    2348780
  • 财政年份:
    2024
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了