Flexible Modeling for High-Dimensional Complex Data: Theory, Methodology, and Computation

高维复杂数据的灵活建模:理论、方法和计算

基本信息

  • 批准号:
    1309507
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

In high dimensional data analysis, the relationships among predictors can be highly nonlinear and non-additive, and taking into account such complex structures may significantly improve model prediction power and provide crucial insight about the underlying data generation mechanism. The goal of this project is to develop and study new statistical and data mining methodologies for detecting nonlinear and non-additive patterns in high dimensional sparse models. When the data dimension is ultra-high, interaction selection is extremely challenging, both numerically and theoretically, due to curse of dimensionality. There are very limited tools available in practice and theory is scant. In this project, the investigators give a comprehensive treatment to the problem of high-dimensional interaction selection. They propose and study novel selection and modeling techniques for a variety of regression and classification models. Fast and robust large-scale computational algorithms are derived. In addition, the investigators are committed to establishing high dimensional theory for interaction selection and providing a solid foundation for the new methods. The investigators also propose and study a unified theory and computation framework to identify nonlinear effects for a broad class of nonparametric regression models. Special effort is spent on addressing computational issues such as multiple parameter tuning, regularization solution path/surface algorithms, and development of user friendly statistical software packages.Big and high dimensional data offer us fascinating and unprecedented opportunities to gain extraordinary insight from data. On the other hand, the scale and volume of data create tremendous challenges for standard analysis tools to extract useful information. The goal of this project is to develop innovative statistical and data mining methods, solid mathematical theory, and powerful computational tools and software to capture hidden and possibly complex patterns when the data dimension is high. One challenging problem to be tackled in this project is high dimensional interaction selection. In genome-wide association studies (GWAS), there is growing evidence that gene-gene and gene-environment interactions can provide key insight about complex biological pathways that underpin human diseases. However, there are very few effective, well-grounded, and computationally attractive tools available in practice to identify interactions for high dimensional data. The investigators try to fill this gap by conducting thorough investigation on the problem. The results from this project research can significantly advance theory and as well as contribute new statistical tools for practical use. The proposed methods have a wide range of scientific applications such as biology, biomedicine, and environmental studies. This project integrates research, education, and interdisciplinary collaboration through developing new graduate and undergraduate courses and involving students in the research activities.
在高维数据分析中,预测因子之间的关系可能是高度非线性和非可加性的,考虑到这种复杂的结构可以显著提高模型的预测能力,并为了解潜在的数据生成机制提供重要的见解。该项目的目标是开发和研究新的统计和数据挖掘方法,用于检测高维稀疏模型中的非线性和非加性模式。当数据维数很高时,由于维数的诅咒,交互选择在数值和理论上都是极具挑战性的。实践中可用的工具非常有限,理论也很缺乏。在本项目中,研究者对高维相互作用选择问题进行了全面的研究。他们提出并研究了各种回归和分类模型的新选择和建模技术。推导出快速、鲁棒的大规模计算算法。此外,研究者还致力于建立相互作用选择的高维理论,为新方法提供坚实的基础。研究人员还提出并研究了一个统一的理论和计算框架,以识别一类广泛的非参数回归模型的非线性效应。特别的努力花在解决计算问题上,如多参数调优,正则化解决路径/表面算法,以及开发用户友好的统计软件包。大数据和高维数据为我们提供了从数据中获得非凡洞察力的迷人和前所未有的机会。另一方面,数据的规模和数量给标准分析工具提取有用信息带来了巨大的挑战。该项目的目标是开发创新的统计和数据挖掘方法、坚实的数学理论以及强大的计算工具和软件,以便在数据维数较高时捕获隐藏的和可能复杂的模式。在这个项目中需要解决的一个具有挑战性的问题是高维交互选择。在全基因组关联研究(GWAS)中,越来越多的证据表明,基因-基因和基因-环境相互作用可以为了解支撑人类疾病的复杂生物学途径提供关键见解。然而,在实践中,很少有有效的、基础良好的、计算上有吸引力的工具可用于识别高维数据的相互作用。调查人员试图通过对问题进行彻底调查来填补这一空白。该项目的研究结果可以显著推进理论,并为实际应用提供新的统计工具。所提出的方法具有广泛的科学应用,如生物学,生物医学和环境研究。该项目通过开发新的研究生和本科课程以及让学生参与研究活动,将研究、教育和跨学科合作结合起来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hao Zhang其他文献

南海トラフ地震の影響を受けるRCラーメン高架橋の強震動および津波による損傷確率の比較
南海海槽地震作用下RC刚构高架桥强地震动和海啸破坏概率比较
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Youhei Nomura;Hao Zhang;Taku Fujiwara;Han Gui and Takashi Akamatsu;望月野亜;桜庭拓也・二瓶泰雄・倉上由貴・入江美月;田中悠暉,川尻峻三,橋本聖,川口貴之,中村大,山下聡;萩田賢司,横関俊也;名波健吾,磯辺弘司,秋山充良,越村俊一
  • 通讯作者:
    名波健吾,磯辺弘司,秋山充良,越村俊一
Remèdes contenant de la vitamine k2 comme ingrédient actif
维生素 K2 成分活性成分的补充
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iwata Ozaki;Hao Zhang;Toshihiko Mizuta;Kyosuke Yamamoto
  • 通讯作者:
    Kyosuke Yamamoto
Object Pooling for Multimedia Event Detection and Evidence Localization
用于多媒体事件检测和证据本地化的对象池
Model updating for rotor-discs system and its application in dynamic coefficients identification of journal bearings
转子盘系统模型更新及其在轴颈轴承动态系数辨识中的应用
  • DOI:
    10.1016/j.measurement.2020.108645
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Yang Kang;Zizhen Qiu;Hao Zhang;Zhanqun Shi;Fengshou Gu
  • 通讯作者:
    Fengshou Gu
Photoexcited Chiral Copper Complex-Mediated Alkene E-Z Isomerization Enables Kinetic Resolution.
光激发手性铜配合物介导的烯烃 E-Z 异构化可实现动力学分辨率。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Zhang;Congcong Huang;Xiang-Ai Yuan;Shouyun Yu
  • 通讯作者:
    Shouyun Yu

Hao Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hao Zhang', 18)}}的其他基金

CAREER: Robot Reflection in Lifelong Adaptation
职业生涯:机器人在终生适应中的反思
  • 批准号:
    2308492
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Robot Reflection in Lifelong Adaptation
职业生涯:机器人在终生适应中的反思
  • 批准号:
    1942056
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Spectroscopic photon localization microscopy for super-resolution molecular imaging
用于超分辨率分子成像的光谱光子定位显微镜
  • 批准号:
    1706642
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
TRIPODS: UA-TRIPODS - Building Theoretical Foundations for Data Sciences
TRIPODS:UA-TRIPODS - 为数据科学奠定理论基础
  • 批准号:
    1740858
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
I-Corps: Opticent Health-Functional Imaging For Early Disease Detection.
I-Corps:用于早期疾病检测的光学健康功能成像。
  • 批准号:
    1507501
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
IDBR: TYPE A: Directly Integratable Photoacoustic Microscopy with Established Optical Microscopy for Comprehensive Sub-cellular Biological Imaging
IDBR:A 型:直接集成光声显微镜与成熟的光学显微镜,用于全面的亚细胞生物成像
  • 批准号:
    1353952
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Measuring plant available phosphorus to increase crop yields and minimise nutrient leaching
测量植物有效磷以提高作物产量并最大程度地减少养分流失
  • 批准号:
    NE/M016919/1
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
ABI Innovation: Gini-based methodologies to enhance network-scale transcriptome analysis in plants
ABI Innovation:基于基尼的方法增强植物网络规模转录组分析
  • 批准号:
    1261830
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Nonparametric Models Building, Estimation, and Selection with Applications to High Dimensional Data Mining
职业:非参数模型构建、估计和选择及其在高维数据挖掘中的应用
  • 批准号:
    1347844
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
A genetic dissection of traits required for sustainable water use in rice using Genome Wide Association Studies (GWAS)
利用全基因组关联研究 (GWAS) 对水稻可持续用水所需的性状进行遗传剖析
  • 批准号:
    BB/J002062/1
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Three-Dimensional Numerical Modeling of Sprite Streamers
雪碧流光的三维数值建模
  • 批准号:
    2247153
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Multicomponent Modeling of High-Dimensional Multiparametric MRI Data
高维多参数 MRI 数据的多分量建模
  • 批准号:
    10861533
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
CAS: Collaborative Research: Design, Characterization, and Modeling of Metal Nanocluster Electrocatalysts Linked to Three-Dimensional Graphene
CAS:合作研究:与三维石墨烯相关的金属纳米团簇电催化剂的设计、表征和建模
  • 批准号:
    2247574
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
  • 批准号:
    10568797
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Graphical Modeling of High-Dimensional Functional Data: Separability Structures and Unified Methodology under General Observational Designs
高维函数数据的图形建模:一般观测设计下的可分离结构和统一方法
  • 批准号:
    2310943
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: A Multi-dimensional Study of Electromagnetic Interference in Wide Bandgap Power Electronics: Modeling, Estimation, and Mitigation
职业:宽带隙电力电子中电磁干扰的多维研究:建模、估计和缓解
  • 批准号:
    2236846
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Design, Characterization, and Modeling of Metal Nanocluster Electrocatalysts Linked to Three-Dimensional Graphene
CAS:合作研究:与三维石墨烯相关的金属纳米团簇电催化剂的设计、表征和建模
  • 批准号:
    2247575
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Advances in High-dimensional Time Series Modeling and Its Interface with Deep Learning
高维时间序列建模及其与深度学习接口的进展
  • 批准号:
    2311178
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
  • 批准号:
    2210282
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了