Integrated Platform to Construct and Image 3-D Perfused Vascular Network Within Thick Matrix
用于在厚基质内构建和成像 3D 灌注血管网络的集成平台
基本信息
- 批准号:1263455
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-15 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Guohao DaiCBET ID: 1263455Intellectual Merit: One of the major challenges in tissue engineering is the inability to grow thick tissues due to lack of vascular perfusion. In addition, a key feature of many adult stem cell niches is their proximity to the vasculature in vivo. Vascular cells not only form conduits to deliver nutrient and oxygen, but also provide cues to control the cellular phenotype in the surrounding tissues. Therefore, building a functional vascular network with physiological perfusion is critical to both fields of stem cells and tissue engineering. The objective of this proposal is to create a perfused, functional perivascular niche with controllable components and physiological parameters. Our approach is to build a 3-D perfused functional vascular channel within hydrogels using a new bio-fabrication technology developed in our lab. These fabricated vascular channels provide a realistic in vitro model system to investigate capillary morphogenesis around the perfused vascular channel within the 3-D matrix. Meanwhile, the imaging modalities to assess the 3-D structures and functions of the vascular channels and to observe the outgrowth of vascular networks is lacking for such thick 3-D matrices (2~3mm). To overcome this problem, we are also developing and improving a new imaging technique called Laminar Optical Tomography (LOT). LOT is able to obtain depth-resolved 3-D quantitative images to depths of several millimeters with high sensitivity. To achieve the full potential of LOT in imaging thick tissue and promote its application in tissue engineering research, we propose to merge these two disciplines (3-D imaging & 3-D tissue printing) in a new platform to study the vasculature formation in thick matrix: Specific Aim 1: Create a perfused, interconnected vasculature within 3-D matrix utilizing a novel cell printing technology. Specific Aim 2: Integrate a high-resolution, multi-spectral molecular laminar optical tomography platform for thick tissue imaging. Specific Aim 3: Validate the LOT in multi-color imaging of vascular structures and fluid flow; Study the maturation process and functionalities of the synthesized structure with regard to matrix properties and culture parameters. The proposed research will generate significant intellectual merits in the fields of stem cells, tissue engineering and biomedical optics: (1) By integrating a novel cell printing technology into the vasculature formation process, this research will lead to a new method to recapitulate and study perivascular niches ex vivo. Through studying its patterning and maturation process under a 3-D perfused environment, this research will define critical factors for the 3-D vasculature to achieve its functions. (2) This research will integrate a new CCD based LOT system and will develop specialized reconstruction algorithm for large data sets. This will establish a new high-resolution mesoscopic fluorescence imaging technique, which will provide a new method to perform functional and molecular imaging of 3-D tissue engineered construct. (3) More generally, this work will identify a set of design principles for the printed structures to support the growth of the surrounding tissues in vitro, and thereby lay the foundation to biofabricate thicker tissues in the future.Broader Impacts: This research has broad impacts in research, society, and education: (1) The proposed research activities will generate fundamental knowledge related to 3-D vascular tissue formation as well as new technologies to obtain functional molecular imaging of the tissues. Both of these advancements will be critical for engineering thick tissue construct and understanding the complex biology of cell interactions within 3-D matrix, which has become increasingly important to the whole field. (2) The proposed educational components will educate undergraduate/graduate students with up-to-date technologies, experimental skills, and creative thinking that are indispensable in the growing field of biomedical engineering. (3) The proposed research and education activities will also have a broad impact on K-12 education through several proposed programs for underrepresented groups in science and engineering, as well as extensive outreach programs targeting students from throughout New York's Tech Valley region. Through activities demonstrating how engineers can solve societal challenges, our students will be more likely to pursue career in science and engineering.
智力优势:组织工程面临的主要挑战之一是由于缺乏血管灌注而无法生长出厚组织。此外,许多成体干细胞壁龛的一个关键特征是它们靠近体内的脉管系统。血管细胞不仅形成输送营养和氧气的管道,而且为控制周围组织的细胞表型提供线索。因此,构建具有生理灌注功能的血管网络对于干细胞和组织工程领域都是至关重要的。该方案的目的是创造一个具有可控成分和生理参数的灌注的、功能性的血管周围生态位。我们的方法是利用我们实验室开发的一种新的生物制造技术在水凝胶中建立一个三维灌注功能血管通道。这些制备的血管通道提供了一个真实的体外模型系统来研究三维基质内灌注血管通道周围的毛细血管形态发生。同时,对于这种厚度的三维基质(2~3mm),缺乏评估血管通道三维结构和功能以及观察血管网络生长的成像方法。为了克服这个问题,我们也在开发和改进一种新的成像技术,称为层流光学层析成像(LOT)。LOT能够以高灵敏度获得深度分辨率为几毫米的三维定量图像。为了充分发挥LOT在厚组织成像方面的潜力,并促进其在组织工程研究中的应用,我们建议将这两个学科(3d成像和3d组织打印)合并在一个新的平台上,研究厚基质中的血管形成。具体目标1:利用一种新的细胞打印技术在3d基质中创建一个灌注的、相互连接的血管。具体目标2:集成高分辨率,多光谱分子层流光学断层扫描平台,用于厚组织成像。专项目标3:验证LOT在血管结构和血流多色成像中的应用;从基质性质和培养参数方面研究合成结构的成熟过程和功能。本研究将在干细胞、组织工程和生物医学光学等领域产生重大的知识价值:(1)通过将一种新的细胞打印技术整合到血管形成过程中,本研究将导致一种新的方法来概括和研究体外血管周围生态位。本研究通过研究三维灌注环境下三维血管的模式和成熟过程,确定三维血管实现其功能的关键因素。(2)本研究将集成一种新的基于CCD的LOT系统,并开发针对大数据集的专用重建算法。这将建立一种新的高分辨率介观荧光成像技术,为三维组织工程结构的功能和分子成像提供一种新的方法。(3)更广泛地说,这项工作将为打印结构确定一套设计原则,以支持体外周围组织的生长,从而为未来生物制造更厚的组织奠定基础。更广泛的影响:本研究在研究、社会和教育方面具有广泛的影响:(1)拟议的研究活动将产生与三维维管组织形成相关的基础知识,以及获得组织功能分子成像的新技术。这两项进展都将对厚组织结构的工程设计和三维基质中细胞相互作用的复杂生物学理解至关重要,这对整个领域变得越来越重要。(2)建议的教育组成部分将教育本科生/研究生最新的技术、实验技能和创造性思维,这些在不断发展的生物医学工程领域是不可或缺的。(3)拟议的研究和教育活动也将对K-12教育产生广泛的影响,通过几个针对科学和工程领域代表性不足群体的拟议项目,以及针对整个纽约科技谷地区学生的广泛推广项目。通过展示工程师如何解决社会挑战的活动,我们的学生将更有可能从事科学和工程方面的职业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guohao Dai其他文献
Enabling Fast 2-bit LLM on GPUs: Memory Alignment and Asynchronous Dequantization
在 GPU 上启用快速 2 位 LLM:内存对齐和异步反量化
- DOI:
10.48550/arxiv.2308.13137 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jinhao Li;Shiyao Li;Jiaming Xu;Shan Huang;Yaoxiu Lian;Jun Liu;Yu Wang;Guohao Dai - 通讯作者:
Guohao Dai
Comprehensive models and analytical solutions for transient heat transfer in PHC energy pile
PHC 能源桩瞬态传热的综合模型与解析解
- DOI:
10.1016/j.compgeo.2024.106713 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:6.200
- 作者:
Guohao Dai;Gangqiang Kong;Huafeng Deng;Qing Yang - 通讯作者:
Qing Yang
Exploiting Online Locality and Reduction Parallelism for Sampled Dense Matrix Multiplication on GPUs
利用在线局部性和约简并行性进行 GPU 上的采样密集矩阵乘法
- DOI:
10.1109/iccd53106.2021.00092 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Zhongming Yu;Guohao Dai;Guyue Huang;Yu Wang;Huazhong Yang - 通讯作者:
Huazhong Yang
Analytical solution of heat transfer for energy soldier piles considering convection at the ground surface and internal wall of underground space
考虑地下空间地表和内壁对流的能源士兵桩传热分析解
- DOI:
10.1016/j.compgeo.2025.107150 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:6.200
- 作者:
Guohao Dai;Gangqiang Kong;Qing Yang - 通讯作者:
Qing Yang
Memory-Bound Proof-of-Work Acceleration for Blockchain Applications
区块链应用程序的内存限制工作证明加速
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Kun Wu;Guohao Dai;Xing Hu;Shuangchen Li;Xinfeng Xie;Yu Wang;Yuan Xie - 通讯作者:
Yuan Xie
Guohao Dai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guohao Dai', 18)}}的其他基金
2020 Biomedical Engineering Society (BMES) - Cellular and Molecular Bioengineering (CMBE) Conference; Rio Grande, Puerto Rico; January 2-6, 2020
2020年生物医学工程学会(BMES)-细胞与分子生物工程(CMBE)会议;
- 批准号:
1933397 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: ENGINEER A FUNCTIONAL 3-D VASCULAR NICHE TO SUPPORT NEURAL STEM CELL SELF-RENEWAL
职业:设计功能性 3D 血管生态位以支持神经干细胞自我更新
- 批准号:
1737130 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: ENGINEER A FUNCTIONAL 3-D VASCULAR NICHE TO SUPPORT NEURAL STEM CELL SELF-RENEWAL
职业:设计功能性 3D 血管生态位以支持神经干细胞自我更新
- 批准号:
1350240 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
An innovative platform using ML/AI to analyse farm data and deliver insights to improve farm performance, increasing farm profitability by 5-10%
An%20innovative%20platform%20using%20ML/AI%20to%20analysis%20farm%20data%20and%20deliver%20insights%20to%20improv%20farm%20performance,%20increasing%20farm%20profitability%20by%205-10%
- 批准号:
10093235 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Collaborative R&D
Automating a novel multi-tool additive and subtractive manufacturing platform for micrometre-resolution prototyping across diverse industries
自动化新型多工具增材和减材制造平台,用于跨不同行业的微米分辨率原型制作
- 批准号:
10097846 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Collaborative R&D
An innovative international payment collection platform using fintech and FPS technology to support SMBs with international transactions that could cut fees by 83%
An%20innovative%20international%20 payment%20collection%20platform%20using%20fintech%20and%20FPS%20technology%20to%20support%20SMBs%20with%20international%20transactions%20that%20could%20cut%20fees%20by%2083%
- 批准号:
10098770 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Collaborative R&D
Antivirus Pandemic Preparedness EuropeAn pLatform (Appeal)
欧洲防病毒大流行准备平台(呼吁)
- 批准号:
10110329 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
EU-Funded
Advanced Modelling Platform with Moving Ventricular Walls for Increasing Speed to Market of Heart Pumps
具有移动心室壁的先进建模平台可加快心脏泵的上市速度
- 批准号:
10071797 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Collaborative R&D
Identification and impact of polymers on stem cell products in an automated biomanufacturing platform
自动化生物制造平台中聚合物对干细胞产品的识别和影响
- 批准号:
10089013 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Collaborative R&D
Efficient and unbiased estimation in adaptive platform trials
自适应平台试验中的高效且公正的估计
- 批准号:
MR/X030261/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
The South Wales and South West England Mental Health Platform Hub
南威尔士和英格兰西南部心理健康平台中心
- 批准号:
MR/Z503745/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
Bovine herpesvirus 4 as a vaccine platform for African swine fever virus antigens in pigs
牛疱疹病毒 4 作为猪非洲猪瘟病毒抗原的疫苗平台
- 批准号:
BB/Y006224/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant