Collaborative Research: Multiscale atomistic modeling tools for electrocatalytic systems
合作研究:电催化系统的多尺度原子建模工具
基本信息
- 批准号:1264104
- 负责人:
- 金额:$ 17.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2015-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTCollaborative Proposals #1264104 - Susan B. Sinnott #1263951 - Michael J. Janik Scientific Merit: As traditional fossil fuel sources of energy are depleted, new energy conversion and chemical energy storage approaches will be needed to supply energy for both portable and stationary applications. Fuel cells offer efficient conversion of chemical to electrical energy. Electrolysis applications reverse this process and store electricity from renewable sources, such as the wind or sun, in chemical form for later use. The efficiency of converting energy between chemical and electrical forms is dictated by atomistic processes that occur at device electrodes. These processes are difficult to probe with conventional experiments. The characterization of these processes is enabled using atomic and quantum level computational methods. There are two major limitations in current modeling approaches for evaluating reactivity of electrode surfaces: the inability to estimate rates for electron transfer reactions and the lack of atomistic force fields that can describe chemical reactions and charge transfer, yet retain the thickness required to capture relevant interfacial phenomena. Professors Michael Janik and Janna Maranas of Pennsylvania State University and Susan Sinnott of the University of Florida have received an award from the National Science Foundation Catalysis & Biocatalysis Program to tackle these limitations. The first limitation will be addressed through the development of a transferable method for electron transfer rate constants using methods based on quantum mechanics. This method will be applied and validated versus experimental data for the carbon dioxide reduction reaction (of relevance for converting electrical energy and waste carbon dioxide into a chemical fuel) and the oxygen reduction reaction (of relevance in fuel cells). The method will be further applied, in collaboration with experiment, to evaluate the reaction mechanism in the electrocatalytic synthesis of high value chemicals from bio-derived feedstock. The second limitation will be addressed through a reactive molecular force field with variable partial charges for both electrode and solvent. Charge optimized many-body reactive potentials will be developed for copper and platinum electrodes in contact with alkali hydroxide electrolytes. Molecular dynamics calculations will evaluate electrochemical interface, including solvent structure and charge distribution. These multiscale atomistic modeling tools enable definitive identification of electrochemical reaction mechanisms. They will be applied to three specific electrocatalytic applications to evaluate a series of reaction specific hypotheses. Broader Impacts: The broader impacts of this work secure a clean energy future in which renewable energy and chemical energy storage work together to provide an efficient, practical approach to sustainable energy. This project develops a joint quantum chemistry and reactive molecular dynamics framework to model electrochemical interfaces, facilitating rational design of materials for improved batteries, fuel cells, and grid-level electrochemical energy storage. With this in mind, educational activities are designed to motivate students to pursue careers in energy related fields. Graduate students will benefit from an inter-disciplinary research project at two universities, and become skilled in multiple computer simulation methods. Portions of the proposed work will be packaged as undergraduate projects at both Penn State and the University of Florida, including underrepresented groups through the Penn State Minority Undergraduate Research Experience and Women in Science and Engineering Research programs. Research opportunities will be provided to high school students through the U. of Florida. The developed computer simulation methods will be broadly distributed to the computational community, allowing others to apply the techniques developed to electrochemical problems outside the scope of this proposal.
摘要合作提案#1264104 - Susan B。Sinnott #1263951 - Michael J. Janik科学功绩:随着传统化石燃料能源的枯竭,需要新的能源转换和化学储能方法来为便携式和固定式应用提供能源。 燃料电池提供化学能到电能的有效转换。 电解应用逆转了这一过程,并以化学形式储存来自可再生能源(如风能或太阳能)的电力供日后使用。 能量在化学形式和电形式之间的转换效率由在装置电极处发生的原子过程决定。这些过程很难用常规实验来探测。这些过程的表征是使用原子和量子级计算方法。目前的建模方法用于评估电极表面的反应性有两个主要的限制:无法估计电子转移反应的速率,以及缺乏可以描述化学反应和电荷转移的原子力场,但仍保留捕获相关界面现象所需的厚度。宾夕法尼亚州立大学的Michael Janik和Janna Maranas教授以及佛罗里达大学的Susan Sinnott教授获得了国家科学基金会催化生物催化计划的奖项,以解决这些限制。第一个限制将通过开发一个可转移的方法,电子转移速率常数使用基于量子力学的方法来解决。 该方法将应用于二氧化碳还原反应(与将电能和废二氧化碳转化为化学燃料相关)和氧还原反应(与燃料电池相关)的实验数据并进行验证。 该方法将进一步应用,与实验合作,以评估在电催化合成高价值的化学品从生物衍生的原料的反应机理。 第二个限制将解决通过一个反应分子力场与可变的部分电荷的电极和溶剂。 电荷优化的多体反应电位将开发与碱金属氢氧化物电解质接触的铜和铂电极。 分子动力学计算将评估电化学界面,包括溶剂结构和电荷分布。 这些多尺度原子建模工具使电化学反应机制的明确识别。他们将被应用到三个具体的电催化应用,以评估一系列的反应具体的假设。更广泛的影响:这项工作的广泛影响确保了清洁能源的未来,可再生能源和化学能源储存共同努力,为可持续能源提供了一种有效,实用的方法。该项目开发了一个联合量子化学和反应分子动力学框架来模拟电化学界面,促进改进电池,燃料电池和电网级电化学储能材料的合理设计。 考虑到这一点,教育活动旨在激励学生追求能源相关领域的职业生涯。 研究生将受益于两所大学的跨学科研究项目,并熟练掌握多种计算机模拟方法。 部分拟议的工作将被打包为宾夕法尼亚州立大学和佛罗里达大学的本科项目,包括通过宾夕法尼亚州立大学少数民族本科生研究经验和妇女在科学和工程研究计划代表性不足的群体。 研究机会将提供给高中学生通过美国。来自佛罗里达。 开发的计算机模拟方法将广泛分布到计算社区,允许其他人将开发的技术应用于本提案范围之外的电化学问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan Sinnott其他文献
Multiscale computational understanding and growth of 2D materials: a review
二维材料的多尺度计算理解与生长:综述
- DOI:
10.1038/s41524-020-0280-2 - 发表时间:
2020-03-19 - 期刊:
- 影响因子:11.900
- 作者:
Kasra Momeni;Yanzhou Ji;Yuanxi Wang;Shiddartha Paul;Sara Neshani;Dundar E. Yilmaz;Yun Kyung Shin;Difan Zhang;Jin-Wu Jiang;Harold S. Park;Susan Sinnott;Adri van Duin;Vincent Crespi;Long-Qing Chen - 通讯作者:
Long-Qing Chen
Susan Sinnott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan Sinnott', 18)}}的其他基金
The Enrollment Floodgates Are Open - Best Practices in Materials Science and Engineering Undergraduate Education for Rising Enrollments, September 9-11, 2019
招生闸门已打开 - 材料科学与工程本科教育最佳实践,招生人数不断增加,2019 年 9 月 9 日至 11 日
- 批准号:
1842175 - 财政年份:2018
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research - CDMR: Informatics Guided Data Driven Computational Design of Multifunctional Materials
协作研究 - CDMR:信息学引导的数据驱动的多功能材料计算设计
- 批准号:
1556783 - 财政年份:2015
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale atomistic modeling tools for electrocatalytic systems
合作研究:电催化系统的多尺度原子建模工具
- 批准号:
1556811 - 财政年份:2015
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research - CDMR: Informatics Guided Data Driven Computational Design of Multifunctional Materials
协作研究 - CDMR:信息学引导的数据驱动的多功能材料计算设计
- 批准号:
1307840 - 财政年份:2013
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
EAGER: Cyberinfrastructure for Atomistic Materials Science (CAMS)
EAGER:原子材料科学 (CAMS) 的网络基础设施
- 批准号:
1246173 - 财政年份:2012
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Symposium on Tribology: Understanding Friction, Lubrication and Wear Across the Scales; Freiburg im Breisgau, Germany; October 4-8, 2010
摩擦学研讨会:了解各种尺度的摩擦、润滑和磨损;
- 批准号:
1016238 - 财政年份:2010
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Computational Investigation of the Chemical Modification of Polymers and Organic Thin Films by Particle Deposition
通过颗粒沉积对聚合物和有机薄膜进行化学改性的计算研究
- 批准号:
0809376 - 财政年份:2008
- 资助金额:
$ 17.36万 - 项目类别:
Continuing Grant
Atomic-scale Friction Research and Education Synergy Hub (AFRESH)
原子尺度摩擦研究和教育协同中心 (AFRESH)
- 批准号:
0742580 - 财政年份:2007
- 资助金额:
$ 17.36万 - 项目类别:
Continuing Grant
U.S.-Japan Cooperative Science: Computational Study of Chemical Reactions and Material Modification during Polyatomic-Ion and Cluster-Surface Deposition
美日合作科学:多原子离子和簇表面沉积过程中化学反应和材料改性的计算研究
- 批准号:
0406491 - 财政年份:2004
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Computational Study of Chemical Reactions and Material Modification during Polyatomic-Ion and Cluster-Surface Deposition
多原子离子和簇表面沉积过程中化学反应和材料改性的计算研究
- 批准号:
0200838 - 财政年份:2002
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
- 批准号:
2414527 - 财政年份:2024
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Building a multiscale community-led ecosystem for crustal geology through the integration of Macrostrat and StraboSpot
合作研究:GEO OSE 第 2 轨道:通过 Macrostrat 和 StraboSpot 的集成构建多尺度社区主导的地壳地质生态系统
- 批准号:
2324580 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148646 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Cardiomyocyte Mechano-Adaptation
合作研究:多尺度心肌细胞机械适应
- 批准号:
2230435 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2328533 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Mechanics of Adsorption-Deformation Coupling in Soft Nanoporous Materials
合作研究:软纳米多孔材料吸附变形耦合的多尺度力学
- 批准号:
2331017 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research: Revealing Strengthening and Toughening Mechanisms in Coconut Endocarp through Integrated Multiscale Modeling and Characterization
合作研究:通过综合多尺度建模和表征揭示椰子内果皮的强化和增韧机制
- 批准号:
2316676 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Continuing Grant