Zeolite Nanosheet on Hydrogen Permeable Membrane: Coupling Catalysis with Hydrogen Removal in Non-oxidative Direct Methane Conversion

透氢膜上的沸石纳米片:非氧化直接甲烷转化中催化与除氢的耦合

基本信息

  • 批准号:
    1264599
  • 负责人:
  • 金额:
    $ 24.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

1264599 LiuThe non-oxidative direct methane conversion (NDMC) to more valuable and easily transportable chemicals and fuels has remained a grand challenge due to the intrinsic kinetic and thermodynamic constraints. A recent report by the US Energy Information Administration envisions inexpensive and abundant natural gas as a raw material that can significantly impact the chemical and energy supplies of the world. A membrane reactor composed of a metal/zeolite (Mo/ZSM5) catalyst and a hydrogen (H2) permeable membrane has the potential to overcome these kinetic and thermodynamic barriers. The essential feature of the membrane reactor is that Mo species within spatially constrained ZSM5 channels containing Broensted acid sites activate methane to form carbon chains while concurrently restricting the carbon chain length; the H2 permeable membrane continuously removes H2 product to increase conversion relative to feed equilibrium limitations. The key objective of this research is to fabricate and describe novel tubular membrane reactors composed of ZSM5 lamellar catalysts and thin H2 permeable ceramic membranes. A focus of the research is controlling the ZSM5 crystal size by assembly of ZSM5 nanosheets and ceramic membranes to optimize methane (CH4) reaction kinetics and H2 separation in NDMC. Preliminary data show that activity of Mo/ZSM5 and H2 permeation through the ceramic membrane depends strongly on the ZSM5 crystal size and membrane thickness, respectively. A cross-disciplinary strategy will be used to control NDMC and create new and potentially transformative ways of converting reactant methane gas to high value-added fuels and chemicals. Broader Impacts: The development of efficient NDMC membrane reactors may lead to new thermochemical processes to meet the demand for high-energy density fuels from methane gas. The project integrates research on zeolite chemistry, solid state ioincs, chemical catalysis, and separation processes with an education and outreach component designed to highlight the importance of chemical engineering relevant to energy conversion. Education will be enhanced by developing a new course based upon PIs' research interests in materials, catalysis, separation, and energy, by recruiting and mentoring undergraduate students from underrepresented communities in research activities, and by outreach programs for K-12 students near the University of Maryland.
由于固有的动力学和热力学约束,甲烷非氧化直接转化(NDMC)为更有价值且易于运输的化学品和燃料仍然是一个巨大的挑战。 美国能源情报署最近的一份报告设想,廉价而丰富的天然气作为一种原材料,可以显著影响世界的化学和能源供应。 由金属/沸石(Mo/ZSM 5)催化剂和氢气(H2)可渗透膜组成的膜反应器具有克服这些动力学和热力学障碍的潜力。 膜反应器的基本特征是,在空间上受约束的ZSM 5通道内的Mo物质含有布朗斯台德酸位点,活化甲烷以形成碳链,同时限制碳链长度; H2可渗透膜连续地去除H2产物以相对于进料平衡限制增加转化率。 本研究的主要目的是制备和描述由ZSM 5层状催化剂和薄的H2渗透陶瓷膜组成的新型管式膜反应器。 研究的重点是通过组装ZSM 5纳米片和陶瓷膜来控制ZSM 5晶体尺寸,以优化NDMC中的甲烷(CH 4)反应动力学和H2分离。 初步的数据表明,Mo/ZSM 5和H2渗透通过陶瓷膜的活性强烈地依赖于ZSM 5的晶体尺寸和膜厚度,分别。 跨学科的战略将被用来控制NDMC,并创造新的和潜在的变革性的方法,将反应甲烷气体转化为高附加值的燃料和化学品。 更广泛的影响:高效NDMC膜反应器的发展可能会导致新的热化学过程,以满足高能量密度燃料的甲烷气体的需求。 该项目将沸石化学,固态离子,化学催化和分离过程的研究与教育和推广组成部分相结合,旨在突出与能源转换相关的化学工程的重要性。 教育将通过开发一个新的课程,根据PI在材料,催化,分离和能源的研究兴趣,通过招募和指导来自研究活动中代表性不足的社区的本科生,以及通过马里兰州大学附近的K-12学生的外展计划来加强。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dongxia Liu其他文献

Metal Oxides Treated by Oxy-Hydrogen Flame: Effects of Reducibility on Oxygen Vacancies, Pt-Support Interactions, and Chemoselective Hydrogenation
  • DOI:
    10.1007/s11244-025-02127-7
  • 发表时间:
    2025-06-24
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Ali Kamali;Zixiao Liu;Sooyeon Hwang;Antara Bhowmick;Akash Warty;Mohammed Almafrachi;Nusrat Sarwahrdy;Mohamad Al-Sheikhly;Dongxia Liu
  • 通讯作者:
    Dongxia Liu
Driving factors of plant and soil properties on ecosystem multifunctionality vary among grassland types in the Qinghai-Tibetan Plateau
  • DOI:
    10.1007/s11104-025-07229-5
  • 发表时间:
    2025-01-24
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Zeying Yao;Meng-ai Hu;Lina Shi;Qiong Wu;Degang Zhang;Guihe Liu;Xinqing Shao;Dongxia Liu
  • 通讯作者:
    Dongxia Liu
Some characteristics of lightning activity and radiation source distribution in a squall line over north China
华北飑线闪电活动及辐射源分布的若干特征
  • DOI:
    10.1016/j.atmosres.2013.06.010
  • 发表时间:
    2013-10
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Dongxia Liu;Xiushu Qie;Lunxiang Pan;Liang Peng
  • 通讯作者:
    Liang Peng
Direct 2,3-Butanediol Conversion to Butene-Rich C3+ Olefins over Copper-Modified 2D Pillared MFI: Consequence of Reduced Diffusion Length
通过铜改性 2D 柱柱 MFI 将 2,3-丁二醇直接转化为富含丁烯的 C3 烯烃:扩散长度缩短的结果
  • DOI:
    10.1021/acssuschemeng.1c07670.s001
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    S. Adhikari;Junyan Zhang;K. Unocic;Evan C. Wegener;Pranaw Kunal;D. Deka;T. Toops;Sreshtha Sinha Majumdar;T. Krause;Dongxia Liu;Zhenglong Li
  • 通讯作者:
    Zhenglong Li
Controlling Diels-Alder reactions in catalytic pyrolysis of sawdust and polypropylene by coupling COsub2/sub atmosphere and Fe-modified zeolite for enhanced light aromatics production
通过将二氧化碳气氛与铁改性沸石耦合,控制木屑和聚丙烯催化热解中的狄尔斯-阿尔德反应,以提高轻质芳烃的生产
  • DOI:
    10.1016/j.jhazmat.2023.131547
  • 发表时间:
    2023-08-05
  • 期刊:
  • 影响因子:
    11.300
  • 作者:
    Yao He;Junjie Chen;Ziming Mo;Changsong Hu;Detao Li;Jianhua Tu;Chen Lin;Yi Wang;Dongxia Liu;Tiejun Wang
  • 通讯作者:
    Tiejun Wang

Dongxia Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dongxia Liu', 18)}}的其他基金

PFI (MCA): Hydrogen and Solid Carbon Production with Electrified Methane Pyrolysis in Zeolite-Protected, Metal Membrane Reactor
PFI (MCA):在沸石保护的金属膜反应器中通过带电甲烷热解生产氢气和固体碳
  • 批准号:
    2325780
  • 财政年份:
    2023
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Standard Grant
PFI (MCA): Hydrogen and Solid Carbon Production with Electrified Methane Pyrolysis in Zeolite-Protected, Metal Membrane Reactor
PFI (MCA):在沸石保护的金属膜反应器中通过带电甲烷热解生产氢气和固体碳
  • 批准号:
    2220588
  • 财政年份:
    2022
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Standard Grant
Propylene-Permeable Catalytic Carbon Molecular Sieve (CMS) Membrane Reactors for Low Temperature Propane Dehydrogenation
用于低温丙烷脱氢的丙烯渗透催化碳分子筛(CMS)膜反应器
  • 批准号:
    1928325
  • 财政年份:
    2019
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: High-performance water purification membranes made of 2D zeolite nanosheets
合作研究:二维沸石纳米片制成的高性能水净化膜
  • 批准号:
    1705284
  • 财政年份:
    2017
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Standard Grant
EAGER: Selectivity Control in Direct Non-oxidative Methane Conversion over Fe?SiO2 Catalyst by Manipulating the Feed Composition
EAGER:通过控制进料组成来控制 Fe?SiO2 催化剂上直接非氧化甲烷转化的选择性
  • 批准号:
    1642405
  • 财政年份:
    2016
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Standard Grant
CAREER: Surface Crystallization of Reactive Oxygen Permeable Hydroxyapatite-based Membranes for Direct Methane Oxidative Conversion
事业:用于直接甲烷氧化转化的活性氧可渗透羟基磷灰石基膜的表面结晶
  • 批准号:
    1351384
  • 财政年份:
    2014
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Standard Grant

相似国自然基金

设计、合成新型半导体纳米页(nanosheet)基可见光催化剂
  • 批准号:
    21001093
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Precise Control of Ge Nanosheet Channel Structure and Investigation of Carrier Transport through vdW Contacts
Ge纳米片通道结构的精确控制和通过vdW接触的载流子传输研究
  • 批准号:
    23H01474
  • 财政年份:
    2023
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of lignin decomposition mechanism that produce nanosheet cellulose
木质素分解产生纳米片状纤维素的机理分析
  • 批准号:
    23K13995
  • 财政年份:
    2023
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ProNaGen: Engineering of Recombinant Protein Nanosheet-Based Bioemulsions for Next Generation Bioprocessing and Biomanufacturing
ProNaGen:用于下一代生物加工和生物制造的基于重组蛋白纳米片的生物乳液的工程
  • 批准号:
    EP/Y032667/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Research Grant
Solar light driven water splitting by visible light sensitive oxide nanosheet
可见光敏感氧化物纳米片驱动太阳能分解水
  • 批准号:
    23K04501
  • 财政年份:
    2023
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of ultrathin laminar nanosheet membranes with controlled 2-D channel structure for organic solvent filtration
开发用于有机溶剂过滤的具有受控二维通道结构的超薄层状纳米片膜
  • 批准号:
    22H01849
  • 财政年份:
    2022
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Hierarchical 2D/3D nanosheet materials for the production of hydrogen from methane without the formation of CO2 and for water purification.
分层 2D/3D 纳米片材料,用于从甲烷生产氢气而不形成二氧化碳,并用于水净化。
  • 批准号:
    RGPIN-2019-04616
  • 财政年份:
    2022
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Discovery Grants Program - Individual
Developments of Versatile Nanosheet Formation Methods by Supramolecular Stimuli of Cyclic Compounds and Its Characterization
环状化合物超分子刺激多功能纳米片形成方法的进展及其表征
  • 批准号:
    22K05064
  • 财政年份:
    2022
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nanosheet-Biomolecular Hybrid Films Synthesis, Structure, and Controlled Release
纳米片-生物分子杂化薄膜的合成、结构和控释
  • 批准号:
    2151804
  • 财政年份:
    2022
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Continuing Grant
Construction of active sites with dual site adsorption on nanosheet edges and facet-controlled nanoparticles
在纳米片边缘和面控制纳米颗粒上构建具有双位点吸附的活性位点
  • 批准号:
    22K05295
  • 财政年份:
    2022
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of backward electron transfer process in dye-sensitized photocatalyst system using oxide nanosheet semiconductor
氧化物纳米片半导体染料敏化光催化剂体系中反向电子转移过程的研究
  • 批准号:
    21K20555
  • 财政年份:
    2021
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了