Collaborative Research: Efficient Rare Cell Capturing in Microfluidic Devices via Multiscale Surface Design

合作研究:通过多尺度表面设计在微流体装置中高效捕获稀有细胞

基本信息

  • 批准号:
    1264808
  • 负责人:
  • 金额:
    $ 25.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Proposal: 1264808/1263940PI: Liu/YangThe goal of this proposal is to design a novel surface that could significantly enhance rare cell capture efficacy and selectivity through synergistic research activities between Lehigh University and University of Pennsylvania, including a novel multi-scale computational model, fabrication of a 3D hierarchical surface, and a microfluidic testing platform. Specifically, we will design and fabricate a hierarchical surface consisting of patterned structures at two difference length scales: a micro-scale surface of ripples or herringbone structure and an array of nanoparticles or nanopillars. The micro-scale sinusoidal ripples and herringbone structures will generate micro-vortices to enhance cell-wall collision, provide larger adhesion area, avoid non-specific cell adhesion and possible cell damage, and enable accurate cell counting; the nanostructures will complement microvilli on cell membranes, thus, improve both interaction specificity and cell capturing efficiency. Through a combined computational and experimental approach we expect that the proposed study will provide important insights for clinical isolation of rare cells from a blood sample. The multiscale computational modeling will be applied for the first time to guide the study of cell capture on various 3D surfaces with consideration of both hydrodynamics and adhesion dynamics. Various unique hierarchical surface designs will be integrated into a microfluidic device to validate the computational prediction and significantly improve rare cell capture performance. Specifically, we plan to: (1) Develop a multi-scale transport and adhesion dynamics model for cell capture process and perform cell capture analysis on surfaces of various designs. Characterize how various surface designs influence cell capture efficiency, throughput, and selectivity. (2) Fabricate a library of 3D hierarchical surface consisting of microscale wavy patterns (1D ripples and 2D herringbone structures) and an array of nanopillars or nanoparticles. (3) Perform microfluidic test on particle and cell capture using the fabricated hierarchical surface. Benchmark various surface designs in terms of capture efficiency, throughput, and selectively (Cheng and Liu). (4) Compare the experimental results with the computational model; optimize the model and re-engineer the hierarchical surface and the rare cell capture device. The synergistic approach across diverse disciplines, including bioengineering, materials science, nanofabrication, and BioMEMS brings about a novel biomimetic approach to construct a lab-on-the-chip device for early cancer detection, thus making the project transformative. The research outcome will create a significant opportunity to excite the general public in bio-nanotechnology, thereby provoking and engaging their interest Science, Technology, Engineering, and Mathematics (STEM). In addition, this work will offer an effective tool to recruit and train students at all levels in a highly-integrated research and educational environment. The research outcome will be disseminated through a dedicated website and tool sharing at nanoHub for posting new discoveries in cell science, materials fabrication, and computational modeling frameworks developed from this project, as well as outreach to K-12 students.
提案:1264808/1263940 PI:Liu/Yang该提案的目标是设计一种新型表面,通过Lehigh大学和宾夕法尼亚大学之间的协同研究活动,包括新型多尺度计算模型,3D分层表面的制造和微流体测试平台,可以显着提高稀有细胞捕获效率和选择性。具体来说,我们将设计和制造一个层次的表面组成的图案化的结构在两个不同的长度尺度:波纹或人字形结构和纳米颗粒或纳米柱阵列的微尺度表面。微尺度的正弦波纹和人字形结构将产生微涡旋,以增强细胞壁碰撞,提供更大的粘附面积,避免非特异性细胞粘附和可能的细胞损伤,并实现准确的细胞计数;纳米结构将补充细胞膜上的微绒毛,从而提高相互作用特异性和细胞捕获效率。通过计算和实验相结合的方法,我们预计,拟议的研究将提供重要的见解,从血液样本中的稀有细胞的临床分离。多尺度计算建模将首次应用于指导各种3D表面上的细胞捕获研究,同时考虑流体动力学和粘附动力学。各种独特的分层表面设计将被集成到微流体装置中,以验证计算预测并显着提高稀有细胞捕获性能。具体而言,我们计划:(1)开发细胞捕获过程的多尺度传输和粘附动力学模型,并在各种设计的表面上进行细胞捕获分析。表征各种表面设计如何影响细胞捕获效率、通量和选择性。(2)制作一个3D分层表面库,包括微尺度波浪图案(1D波纹和2D人字形结构)和纳米柱或纳米颗粒阵列。(3)使用制造的分层表面对颗粒和细胞捕获进行微流体测试。在捕获效率、通量和选择性方面对各种表面设计进行基准测试(Cheng和Liu)。(4)将实验结果与计算模型进行比较,优化模型,重新设计分层表面和稀有细胞捕获装置。跨不同学科的协同方法,包括生物工程,材料科学,纳米纤维和BioMEMS,带来了一种新的仿生方法来构建用于早期癌症检测的芯片实验室设备,从而使该项目具有变革性。研究成果将创造一个重要的机会,激发公众对生物纳米技术的兴趣,从而激发和吸引他们对科学,技术,工程和数学(STEM)的兴趣。此外,这项工作将提供一个有效的工具,在高度一体化的研究和教育环境中招募和培训各级学生。研究成果将通过nanoHub的专用网站和工具共享进行传播,用于发布从该项目开发的细胞科学,材料制造和计算建模框架的新发现,以及对K-12学生的推广。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yaling Liu其他文献

Stimulatory cross-talk between NFAT3 and ER in breast cancer cells
乳腺癌细胞中 NFAT3 和 ER 之间的刺激串扰
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Cuifen Huang;Qiujun Lu;Hao Zhang;Lihua Ding;Xiangyang Xie;Yaling Liu;Xudong Zhu;Chunfang Hao;Lei Zhou;Jianhua Zhu;Yufei Liu;Qinong Ye
  • 通讯作者:
    Qinong Ye
Simvastatin Enhances Muscle Regeneration Through Autophagic Defect-Mediated Inflammation and mTOR Activation in G93ASOD1 Mice
辛伐他汀通过自噬缺陷介导的炎症和 mTOR 激活增强 G93ASOD1 小鼠的肌肉再生
  • DOI:
    10.1007/s12035-020-02216-6
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yafei Wang;Lin Bai;Shuai Li;Ya Wen;Qi Liu;Rui Li;Yaling Liu
  • 通讯作者:
    Yaling Liu
3,4,6-Tri-O-acetyl-1,2-O-[1-(exo-ethoxy)ethylidene]-β-D-mannopyranose 0.11-hydrate.
3,4,6-三-O-乙酰基-1,2-O-[1-(外乙氧基)亚乙基]-β-D-吡喃甘露糖0.11-水合物。
Prediction of sugar beet yield and quality parameters using Stacked-LSTM model with pre-harvest UAV time series data and meteorological factors
利用具有收获前无人机时间序列数据和气象因素的堆叠长短期记忆网络(Stacked-LSTM)模型预测甜菜产量和质量参数
  • DOI:
    10.1016/j.aiia.2025.02.004
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    12.400
  • 作者:
    Qing Wang;Ke Shao;Zhibo Cai;Yingpu Che;Haochong Chen;Shunfu Xiao;Ruili Wang;Yaling Liu;Baoguo Li;Yuntao Ma
  • 通讯作者:
    Yuntao Ma
Different effects of tumor necrosis factor monoclonal antibody and receptor fusion protein on bone metabolism
肿瘤坏死因子单克隆抗体与受体融合蛋白对骨代谢的不同影响
  • DOI:
    10.1016/j.intimp.2025.115108
  • 发表时间:
    2025-09-23
  • 期刊:
  • 影响因子:
    4.700
  • 作者:
    Chenyu Ran;Xinyu Tao;Huijun Shao;Yaling Liu;Jinhui Tao
  • 通讯作者:
    Jinhui Tao

Yaling Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yaling Liu', 18)}}的其他基金

PFI: AIR-TT: PharmaFlux: Drug Evaluation on a Biomimetic Microfluidic Device
PFI:AIR-TT:PharmaFlux:仿生微流体装置的药物评估
  • 批准号:
    1701136
  • 财政年份:
    2017
  • 资助金额:
    $ 25.38万
  • 项目类别:
    Standard Grant
I-Corps: Microfluidic Device for the Evaluation of Drug Carrier Delivery
I-Corps:用于评估药物载体输送的微流体装置
  • 批准号:
    1611718
  • 财政年份:
    2015
  • 资助金额:
    $ 25.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Modeling and Experimental Study of Blood Cell Interactions with Application to Functionalized Leukocytes Killing Cancer Cells
合作研究:血细胞相互作用的多尺度建模和实验研究及其应用于功能化白细胞杀死癌细胞的研究
  • 批准号:
    1516236
  • 财政年份:
    2015
  • 资助金额:
    $ 25.38万
  • 项目类别:
    Standard Grant
CAREER: Predicting Nanoparticle Targeted Delivery Efficacy in Vascular Environment through Multiscale Modeling
职业:通过多尺度建模预测血管环境中纳米颗粒的靶向递送功效
  • 批准号:
    1113040
  • 财政年份:
    2011
  • 资助金额:
    $ 25.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterization of Nanosensor Field-Assisted Detection of Biomarkers at Ultralow Concentration
合作研究:超低浓度生物标志物纳米传感器现场辅助检测的表征
  • 批准号:
    1067502
  • 财政年份:
    2011
  • 资助金额:
    $ 25.38万
  • 项目类别:
    Standard Grant
CAREER: Predicting Nanoparticle Targeted Delivery Efficacy in Vascular Environment through Multiscale Modeling
职业:通过多尺度建模预测血管环境中纳米颗粒的靶向递送功效
  • 批准号:
    0955214
  • 财政年份:
    2010
  • 资助金额:
    $ 25.38万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 25.38万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 25.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 25.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 25.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
  • 批准号:
    2346650
  • 财政年份:
    2024
  • 资助金额:
    $ 25.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
  • 批准号:
    2346651
  • 财政年份:
    2024
  • 资助金额:
    $ 25.38万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312886
  • 财政年份:
    2023
  • 资助金额:
    $ 25.38万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312884
  • 财政年份:
    2023
  • 资助金额:
    $ 25.38万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
  • 批准号:
    2313084
  • 财政年份:
    2023
  • 资助金额:
    $ 25.38万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 25.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了