Whitney's Extension Problems

惠特尼的推广问题

基本信息

  • 批准号:
    1265668
  • 负责人:
  • 金额:
    $ 14.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2013-10-31
  • 项目状态:
    已结题

项目摘要

This mathematics research project by Garving K. Luli is built upon the recent successes in extending real-valued functions in classical smooth function spaces and aims to develop the theory for the extension of real-valued and vector-valued functions in other function spaces. The objectives are twofold: First, to put extensions in more general function spaces on a firm theoretical ground to set the stage for developing efficient algorithms that will be of practical importance; second, to explore connections of extension problems to other areas of mathematics. Special focus will be on extensions in Sobolev spaces, which are ubiquitous and indispensable spaces in modern analysis and the understanding of which holds the promise of deepening our knowledge of their structures. The rich connection of extension problems and commutative algebra will also be further exploited.Results from this mathematics research project have important connections to harmonic analysis, combinatorics, computer science, partial differential equations, geometric analysis, numerical analysis, and algebraic geometry. The mathematical analysis considered in this project is crucial to data fitting, which is an important component in the study of large data sets. Data fitting is essential in many areas of science and technology, as the proper arrangement of large amounts of data has led to new discoveries in many disciplines. Nowadays, data fitting is being carried out almost exclusively in the regime of smooth functions. A well-established theory in interpolation by more general functions, as carried out in this project, will undoubtedly advance the state of art in data analysis and will lead to new and subtle, fundamental discoveries that cannot be detected by current data fitting models. Many of the problems proposed in the project have a strong interdisciplinary flavor, and they will help bring together researchers with common interests but different backgrounds.
这个数学研究项目由Garving K. Luli建立在经典光滑函数空间中实值函数扩展的最新成功之上,旨在发展实值和向量值函数在其他函数空间中的扩展理论。目标有两个:首先,把扩展在更一般的函数空间上的坚实的理论基础,为开发具有实际重要性的高效算法奠定基础;其次,探索扩展问题与其他数学领域的联系。特别关注的是Sobolev空间的扩展,这是现代分析中无处不在和不可或缺的空间,对它的理解有望加深我们对其结构的认识。该数学研究项目的成果与调和分析、组合数学、计算机科学、偏微分方程、几何分析、数值分析、代数几何等学科有着重要的联系。在这个项目中考虑的数学分析是至关重要的数据拟合,这是一个重要的组成部分,在大型数据集的研究。数据拟合在科学和技术的许多领域都是必不可少的,因为大量数据的适当安排导致了许多学科的新发现。 如今,数据拟合几乎完全在光滑函数的范围内进行。一个完善的理论插值更一般的功能,在这个项目中进行,无疑将推进数据分析的艺术状态,并将导致新的和微妙的,根本的发现,不能检测到当前的数据拟合模型。该项目中提出的许多问题具有强烈的跨学科色彩,它们将有助于将具有共同兴趣但背景不同的研究人员聚集在一起。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Garving Luli其他文献

Garving Luli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Garving Luli', 18)}}的其他基金

Smooth Solutions to Linear Inequalities, Constrained Sobolev interpolation, and Trace Problems on Domains
线性不等式的平滑解、约束 Sobolev 插值和域上的追踪问题
  • 批准号:
    2247429
  • 财政年份:
    2023
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
CAREER: Variational Problems on Arbitrary Sets
职业:任意集上的变分问题
  • 批准号:
    1554733
  • 财政年份:
    2016
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Continuing Grant
Whitney's Extension Problems
惠特尼的推广问题
  • 批准号:
    1355968
  • 财政年份:
    2013
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Continuing Grant

相似海外基金

Parametrization, Embedding and Extension Problems in Metric Spaces
度量空间中的参数化、嵌入和扩展问题
  • 批准号:
    1952510
  • 财政年份:
    2019
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Continuing Grant
Parametrization, Embedding and Extension Problems in Metric Spaces
度量空间中的参数化、嵌入和扩展问题
  • 批准号:
    1800731
  • 财政年份:
    2018
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Continuing Grant
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
  • 批准号:
    RGPIN-2014-05317
  • 财政年份:
    2018
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Discovery Grants Program - Individual
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
  • 批准号:
    RGPIN-2014-05317
  • 财政年份:
    2017
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Discovery Grants Program - Individual
Studies on Vanishing Theorems and Extension Problems of Holomorphic Sections based on Singular Hermitian Metrics
基于奇异埃尔米特度量的全纯截面消失定理与可拓问题研究
  • 批准号:
    17H04821
  • 财政年份:
    2017
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Extension of Jurisdiction of the International Court of Justice and its Problems
国际法院管辖权的扩大及其问题
  • 批准号:
    16K03324
  • 财政年份:
    2016
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
  • 批准号:
    RGPIN-2014-05317
  • 财政年份:
    2016
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Discovery Grants Program - Individual
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
  • 批准号:
    RGPIN-2014-05317
  • 财政年份:
    2015
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Discovery Grants Program - Individual
Subgraph extension problem: structures, characterizations and its connection with edge-weighting coloring problems
子图扩展问题:结构、表征及其与边加权着色问题的联系
  • 批准号:
    RGPIN-2014-05317
  • 财政年份:
    2014
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatoral problems on matching extension and graph factors
匹配扩展和图因子的组合问题
  • 批准号:
    122059-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了