Towards a Computationally Efficient Recursive Model Reduction and Controller Design Approach for Spatially Distributed Processes
针对空间分布式过程的计算高效的递归模型简化和控制器设计方法
基本信息
- 批准号:1300322
- 负责人:
- 金额:$ 33.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research project is to relax the requirements of data-based nonlinear order reduction methods and extend their applicability towards the control and optimization of dissipative partial differential equation (PDE) systems arising in the context of spatially distributed processes. To achieve this objective, the research will initially focus on creating a computationally efficient data-driven algorithm for: a) the derivation of nonlinear low-order, approximate models for dissipative PDE systems that are specifically tailored for control and optimization purposes, and b) characterization of the error between the low-order model and PDE system solutions. Subsequently, the research will focus on the synthesis of practically implementable feedback control structures that can deal with the issues of nonlinearity, model uncertainty, constrains and limited measurement availability. Concurrently, computational issues of optimization/optimal operation policies for spatially distributed processes will be resolved. This will be achieved via the derivation of a systematic scheme for the formulation of computationally efficient dynamic optimization problems that are amenable to standard search algorithms. The research results will be transferred into the industrial sector through the development and dissemination of software with a transparent user-machine interaction interface. Analyzing, optimizing and tightly controlling transport-reaction processes will benefit key processes of a wide range of industries such as lithographic reactors for microelectronics and photovoltaics fabrication and advanced catalytic reactors and industrial glass furnaces. Moreover, numerous activities will be pursued to integrate the research with education including incorporation of research results in optimization and control courses, undergraduate student participation in research through the honors program, and the development of educational tools such as matlab add-ons, java applets and wikis.
本研究项目的目标是放宽基于数据的非线性降阶方法的要求,并将其适用性扩展到空间分布过程背景下产生的耗散偏微分方程(PDE)系统的控制和优化。为了实现这一目标,该研究最初将重点关注创建一种计算高效的数据驱动算法,用于:a)推导专门针对控制和优化目的定制的耗散偏微分方程系统的非线性低阶近似模型,以及b)表征低阶模型和偏微分方程系统解之间的误差。B)低阶模型和偏微分方程系统解之间的误差。随后,研究将集中在合成的实际可实现的反馈控制结构,可以处理的问题的非线性,模型的不确定性,约束和有限的测量可用性。同时,空间分布过程的优化/最优操作策略的计算问题将得到解决。这将是通过推导出一个系统的计划,制定计算效率的动态优化问题,是服从标准的搜索算法。将通过开发和传播具有透明的用户-机器交互界面的软件,将研究成果转移到工业部门。分析、优化和严格控制传输-反应过程将使各种行业的关键过程受益,例如用于微电子和光电子制造的光刻反应器以及先进的催化反应器和工业玻璃熔炉。 此外,许多活动将追求研究与教育相结合,包括在优化和控制课程的研究成果,本科生通过荣誉计划参与研究,并开发教育工具,如matlab插件,java applets和wiki。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Antonios Armaou其他文献
Lyapunov based on-line model reduction and control of semilinear dissipative distributed parameter systems with minimum feedback information
- DOI:
10.1016/j.jprocont.2021.05.011 - 发表时间:
2021-08-01 - 期刊:
- 影响因子:
- 作者:
Davood B. Pourkargar;Antonios Armaou - 通讯作者:
Antonios Armaou
Superbasin strategy aided Monte Carlo simulation for modelling and accelerating dynamic process of photoiniferter-RAFT polymerization at microscopic scale
超盆地策略辅助蒙特卡洛模拟用于在微观尺度上对光引发剂-可逆加成-断裂链转移(RAFT)聚合的动态过程进行建模和加速
- DOI:
10.1016/j.cej.2025.164363 - 发表时间:
2025-08-15 - 期刊:
- 影响因子:13.200
- 作者:
Rui Liu;Xi Chen;Antonios Armaou - 通讯作者:
Antonios Armaou
Antonios Armaou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Antonios Armaou', 18)}}的其他基金
Development of a novel predictive controller synthesis method for complex reaction systems
复杂反应系统新型预测控制器综合方法的开发
- 批准号:
1264902 - 财政年份:2013
- 资助金额:
$ 33.95万 - 项目类别:
Continuing Grant
CAREER: Optimal Operation and Control of Multiscale Process Systems
职业:多尺度过程系统的优化运行和控制
- 批准号:
0644519 - 财政年份:2006
- 资助金额:
$ 33.95万 - 项目类别:
Standard Grant
相似海外基金
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 33.95万 - 项目类别:
Continuing Grant
Computationally Efficient Methods for Control of Epidemics on Networks
控制网络流行病的计算有效方法
- 批准号:
2240848 - 财政年份:2023
- 资助金额:
$ 33.95万 - 项目类别:
Standard Grant
Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
- 批准号:
DGECR-2022-00026 - 财政年份:2022
- 资助金额:
$ 33.95万 - 项目类别:
Discovery Launch Supplement
Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
- 批准号:
RGPIN-2022-04639 - 财政年份:2022
- 资助金额:
$ 33.95万 - 项目类别:
Discovery Grants Program - Individual
ATD: Collaborative Research: Computationally Efficient Algorithms for Detecting Anomalous Atmospheric Emissions
ATD:协作研究:用于检测异常大气排放的计算高效算法
- 批准号:
2341843 - 财政年份:2022
- 资助金额:
$ 33.95万 - 项目类别:
Standard Grant
A Computationally Efficient Approach to Predict Population Risk with Machine Learning
通过机器学习预测人口风险的高效计算方法
- 批准号:
10379613 - 财政年份:2022
- 资助金额:
$ 33.95万 - 项目类别:
Collaborative Research: Computationally Efficient Algorithms for Large-scale Bilevel Optimization Problems
协作研究:大规模双层优化问题的计算高效算法
- 批准号:
2127697 - 财政年份:2021
- 资助金额:
$ 33.95万 - 项目类别:
Standard Grant
Computationally investigating an unexplored domain for efficient hydrogen production
通过计算研究有效制氢的未探索领域
- 批准号:
565008-2021 - 财政年份:2021
- 资助金额:
$ 33.95万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative Research: Computationally Efficient Algorithms for Large-scale Bilevel Optimization Problems
协作研究:大规模双层优化问题的计算高效算法
- 批准号:
2127696 - 财政年份:2021
- 资助金额:
$ 33.95万 - 项目类别:
Standard Grant
EAGER: IIS: Enabling Computationally Efficient Fuzzy Clustering for Distributed Big Data
EAGER:IIS:为分布式大数据启用计算高效的模糊聚类
- 批准号:
2140729 - 财政年份:2021
- 资助金额:
$ 33.95万 - 项目类别:
Standard Grant