Development of a novel predictive controller synthesis method for complex reaction systems
复杂反应系统新型预测控制器综合方法的开发
基本信息
- 批准号:1264902
- 负责人:
- 金额:$ 20.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Armaou, AntoniosInstitutions: Pennsylvania State UniversityProposal Number: 1264902Title: Development of a novel predictive controller synthesis method for complex reaction systemsIntellectual Merit: Continuous pressure on profit margins and ever stringent environmental limits have ledto a need to develop advanced control structures that force optimal process behavior and simultaneouslysatisfy strict process and product quality constraints. Over the past twenty years model predictivecontrol (MPC) has become a powerful tool that is extensively used by the chemical industry. The controlaction in MPC is calculated by repeatedly solving online a finite-horizon open-loop optimization problem.As the control action is computed during process evolution, MPC has the capability to suppress the externaldisturbances and tolerate model inaccuracies during the course of forcing the system to follow a certain optimalpath that respects the process constraints. Issues that significantly limit the practical implementationof MPCs is their computational requirements, the need for development of specialized search algorithms andperformance degradation due to model uncertainty.Motivated by the above, this work aims to extend the applicability of MPC designs to complexprocesses and address their computational requirements which have so far prevented their implementation tofast evolving and unstable processes. The intellectual objective is to develop ageneral and systematic MPC synthesis methodology that is specifically tailored for processes in the chemicaland energy fields. The work will resolve fundamental computational issues associated with a)the dynamic nature of optimal control problems, and b) spatial variations due to the interplay of transportphenomena and reaction. Individual project aims include:o Development of a computationally efficient algorithm to derive nonlinear low-order, approximatealgebraic models that describe the dynamic process behavior.o Characterization of error and enforcement of user-defined error bounds.o Construction of practically implementable MPC designs via reformulation of the underlying dynamicoptimization problem as an algebraic one that is amenable to standard search algorithms.o Computational acceleration of the MPC designs. Characterization of model nonlinearity and uncertaintyeffects on MPC results.o Integration of the research results into the graduate curriculum and dissemination of softwaretools; involvement of undergraduate students into selected parts of the research and revision ofundergraduate curriculum.Broader Impact: A wide range of complex industrial processes could benefit from the results of this research. Examples include both batch reactors and reactive distillation columns for the production of unsaturated polyesters, and microelectronics manufacturing processes (e.g. vapor phase epitaxy, chemical vapor deposition, etching & electrodeposition). The latter processes are extensively used forthe production of both organic and inorganic photovoltaic systems. The PI aims to implement the research results in real-life industrial processes focusing on economic operation and tight control of key process and product characteristics.The predictive controllers will be used in collaborative efforts with NTUA and PSU experimentaliststo design more efficient experiments, discover crucial process parameters and identify optimaltime dependent operating conditions. In return, the developed methodologies will be evaluated in real-lifeexperimental reactors; relevant weaknesses will be identified and addressed.To transfer the results and insight of the research to the industrial sector, the PI will also activelyseek collaborations with industry and will develop and disseminate software tools with a transparentuser-machine interaction interface. In addition, The PI plans a number of activities to integrate theresearch with education including incorporation of research results in optimization and control courses,undergraduate student participation in research through the honors program, and the development of educationaltools. Finally, the PI will employ current available venues to efficiently disseminate the software toother research groups within Penn State, other educational institutions and industries.
PI:Armaou,Antonios 机构:宾夕法尼亚州立大学 提案编号:1264902 标题:开发一种用于复杂反应系统的新型预测控制器合成方法 智力优点:利润率的持续压力和日益严格的环境限制导致需要开发先进的控制结构,以强制实现最佳过程行为,同时满足严格的过程和产品质量约束。在过去的二十年里,模型预测控制 (MPC) 已成为化工行业广泛使用的强大工具。 MPC中的控制作用是通过在线重复求解有限范围开环优化问题来计算的。由于控制作用是在过程演化过程中计算的,MPC有能力在迫使系统遵循一定的尊重过程约束的最优路径的过程中抑制外部干扰并容忍模型的不准确性。显着限制 MPC 实际实现的问题是其计算要求、开发专门搜索算法的需要以及由于模型不确定性而导致的性能下降。受上述启发,这项工作旨在将 MPC 设计的适用性扩展到复杂过程,并解决其计算要求,这些要求迄今为止阻碍了其在快速发展和不稳定过程中的实现。其智力目标是开发一种通用且系统的 MPC 合成方法,该方法专门针对化学和能源领域的过程而定制。这项工作将解决与以下相关的基本计算问题:a)最优控制问题的动态性质,b)由于传输现象和反应的相互作用而导致的空间变化。各个项目的目标包括: o 开发一种计算高效的算法,以导出描述动态过程行为的非线性低阶近似代数模型。 o 误差表征和用户定义误差界限的执行。 o 通过将底层动态优化问题重新表述为适合标准搜索算法的代数问题,构建实际可实现的 MPC 设计。 o 计算 加速 MPC 设计。模型非线性和不确定性对 MPC 结果影响的表征。 o 将研究成果纳入研究生课程和软件工具的传播;本科生参与本科课程的研究和修订的选定部分。更广泛的影响:广泛的复杂工业过程可以从这项研究的结果中受益。例子包括用于生产不饱和聚酯的间歇式反应器和反应蒸馏塔,以及微电子制造工艺(例如气相外延、化学气相沉积、蚀刻和电沉积)。后一种工艺广泛用于有机和无机光伏系统的生产。该 PI 旨在将研究成果应用到现实工业过程中,重点关注经济运行以及对关键过程和产品特性的严格控制。预测控制器将与 NTUA 和 PSU 实验人员合作使用,以设计更高效的实验,发现关键过程参数并确定最佳的时间相关操作条件。作为回报,所开发的方法将在现实实验反应器中进行评估;为了将研究结果和见解转移到工业部门,PI还将积极寻求与工业界的合作,并开发和传播具有透明的人机交互界面的软件工具。此外,PI还计划开展一系列将研究与教育相结合的活动,包括将研究成果纳入优化和控制课程、本科生通过荣誉计划参与研究以及开发教育工具。最后,PI 将利用当前可用的场所向宾夕法尼亚州立大学、其他教育机构和行业内的其他研究小组有效地传播该软件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Antonios Armaou其他文献
Lyapunov based on-line model reduction and control of semilinear dissipative distributed parameter systems with minimum feedback information
- DOI:
10.1016/j.jprocont.2021.05.011 - 发表时间:
2021-08-01 - 期刊:
- 影响因子:
- 作者:
Davood B. Pourkargar;Antonios Armaou - 通讯作者:
Antonios Armaou
Superbasin strategy aided Monte Carlo simulation for modelling and accelerating dynamic process of photoiniferter-RAFT polymerization at microscopic scale
超盆地策略辅助蒙特卡洛模拟用于在微观尺度上对光引发剂-可逆加成-断裂链转移(RAFT)聚合的动态过程进行建模和加速
- DOI:
10.1016/j.cej.2025.164363 - 发表时间:
2025-08-15 - 期刊:
- 影响因子:13.200
- 作者:
Rui Liu;Xi Chen;Antonios Armaou - 通讯作者:
Antonios Armaou
Antonios Armaou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Antonios Armaou', 18)}}的其他基金
Towards a Computationally Efficient Recursive Model Reduction and Controller Design Approach for Spatially Distributed Processes
针对空间分布式过程的计算高效的递归模型简化和控制器设计方法
- 批准号:
1300322 - 财政年份:2013
- 资助金额:
$ 20.49万 - 项目类别:
Standard Grant
CAREER: Optimal Operation and Control of Multiscale Process Systems
职业:多尺度过程系统的优化运行和控制
- 批准号:
0644519 - 财政年份:2006
- 资助金额:
$ 20.49万 - 项目类别:
Standard Grant
相似国自然基金
Novel-miR-1134调控LHCGR的表达介导拟
穴青蟹卵巢发育的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
- 批准号:32002421
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
- 批准号:31902347
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular dissection of extrachromosomal DNA formation, development, and evolution
染色体外 DNA 形成、发育和进化的分子解剖
- 批准号:
10640520 - 财政年份:2023
- 资助金额:
$ 20.49万 - 项目类别:
Sensory Phenotyping to Enhance Neuropathic Pain Drug Development
感觉表型增强神经病理性疼痛药物的开发
- 批准号:
10724809 - 财政年份:2023
- 资助金额:
$ 20.49万 - 项目类别:
Development of serologic test for early risk stratification of islet autoimmunity in genetically predisposed T1D individuals
开发用于遗传易感性 T1D 个体胰岛自身免疫早期风险分层的血清学检测
- 批准号:
10760885 - 财政年份:2023
- 资助金额:
$ 20.49万 - 项目类别:
Development of Coccidioides Cytokine Release Assay
球孢子菌细胞因子释放测定的发展
- 批准号:
10760131 - 财政年份:2023
- 资助金额:
$ 20.49万 - 项目类别:
How reasoning contributes to preschoolers’ prosocial development
推理如何促进学龄前儿童亲社会发展
- 批准号:
10645706 - 财政年份:2023
- 资助金额:
$ 20.49万 - 项目类别:
Development of an Integrated Risk Prediction Model of Taxane-induced Peripheral Neuropathy
紫杉烷诱发的周围神经病变综合风险预测模型的开发
- 批准号:
10566077 - 财政年份:2023
- 资助金额:
$ 20.49万 - 项目类别:
Leveraging a novel health records platform to predict the development of cardiovascular disease following kidney transplantation
利用新型健康记录平台预测肾移植后心血管疾病的发展
- 批准号:
10679322 - 财政年份:2023
- 资助金额:
$ 20.49万 - 项目类别:
Redefining Chiari Type I Malformation and its Impact on Brain Development
重新定义 Chiari I 型畸形及其对大脑发育的影响
- 批准号:
10629116 - 财政年份:2023
- 资助金额:
$ 20.49万 - 项目类别:
Development of Selective Oxidative Biocatalytic Methods
选择性氧化生物催化方法的发展
- 批准号:
10606798 - 财政年份:2023
- 资助金额:
$ 20.49万 - 项目类别:
Development and Pre-Clinical Validation of Quantitative Imaging of Cell State Kinetics (QuICK) for Functional Precision Oncology
用于功能性精准肿瘤学的细胞状态动力学定量成像 (QuICK) 的开发和临床前验证
- 批准号:
10737379 - 财政年份:2023
- 资助金额:
$ 20.49万 - 项目类别: