Analysis of moving interface problems in fluid dynamics

流体动力学中的运动界面问题分析

基本信息

  • 批准号:
    1301380
  • 负责人:
  • 金额:
    $ 21.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Idealized fluid flows are modeled by the Euler equations of fluid dynamics; these are a coupled system on nonlinear conservation laws in (3+1)-dimensional space-time, and are the fundamental to all models of fluid motion. Compressible flows, in which the theory of sound is included, exhibit discontinuous wave profiles; examples include shock waves, contact discontinuities, moving material interfaces, moving vacuum boundaries, entropy waves, and a variety of additional discontinuous wave patterns. The analysis of such multi-dimensional wave patterns, and in particular, solutions of the Euler equations which propagate at least one surface of discontinuity, is fundamental to the understanding of basic physical phenomena. The goal of this research effort is to treat such multi-dimensional discontinuous wave profiles as moving free-boundary problems, and to develop a theory for the well-posedness of hyperbolic and degenerate hyperbolic systems, construct solutions which exhibit finite-time singularities wherein the propagating hypersurfaces collide with one another, study singular asymptotic limits such as vanishing viscosity limits and limits of zero surface tension, and develop a novel nonlinear stability theory for so-called hyperbolic-parabolic problems which are ubiquitous in models of phase transition.Multiphase fluid flows with moving interfaces play a central role in a multitude of physical and engineering applications, ranging from the creation of hurricanes due to wind blowing on top of the ocean surface to the atomization of liquid fuel jets in combustion chambers to the motion of astrophysical bodies such as gaseous stars, and to fundamental predictions in atmospheric science and meteorology. The analytical understanding gained in this work may have important ramifications in the understanding of basic physical phenomena, which is heretofore, poorly understood. In addition to basic wave motion and singularities that occurs in the motion of interfaces between water and air, other conventional examples include the interface between air and water, the motion of cloud fronts, the melting of ice-bergs, basic instabilities between two compressed gases, the behavior of a gas bubble in a liquid in a shock wave, and liquid fuels which are usually burned by first atomizing a fuel jet to increase the surface area and hence the evaporation rate. This proposed research aims to analyze the motion of evolving surfaces of discontinuity in gases, liquids, plasmas, as well as in the context of classical phase transition models.
理想流体流动用流体力学欧拉方程建模;它们是(3+1)维时空中非线性守恒定律的耦合系统,是所有流体运动模型的基础。包含声理论的可压缩流表现出不连续的波剖面;例子包括激波、接触不连续面、移动的材料界面、移动的真空边界、熵波和各种附加的不连续波模式。对这种多维波型的分析,特别是对传播至少一个不连续面的欧拉方程的解的分析,是理解基本物理现象的基础。本研究工作的目标是将这种多维不连续波轮廓视为移动自由边界问题,并为双曲和退化双曲系统的适定性发展一种理论,构造具有有限时间奇点的解,其中传播的超表面相互碰撞,研究奇异渐近极限,如消失粘度极限和零表面张力极限,并针对相变模型中普遍存在的所谓双曲抛物型问题,提出了一种新的非线性稳定性理论。具有移动界面的多相流体流动在许多物理和工程应用中发挥着核心作用,从海风吹过海洋表面产生的飓风到燃烧室中液体燃料射流的雾化,再到天体物理体(如气态恒星)的运动,以及大气科学和气象学的基本预测。在这项工作中获得的分析性理解可能会对理解基本物理现象产生重要的影响,迄今为止,人们对这些现象知之甚少。除了基本的波浪运动和发生在水和空气之间的界面运动中的奇点之外,其他传统的例子包括空气和水之间的界面,云锋的运动,冰山的融化,两种压缩气体之间的基本不稳定性,激波中液体中的气泡的行为,以及通常通过首先雾化燃料喷射来增加表面积从而增加蒸发速率的液体燃料。本研究旨在分析气体、液体、等离子体中不断变化的不连续表面的运动,以及在经典相变模型的背景下。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steve Shkoller其他文献

The geometry of maximal development and shock formation for the Euler equations in multiple space dimensions
多维空间欧拉方程最大发展和激波形成的几何
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Steve Shkoller;V. Vicol
  • 通讯作者:
    V. Vicol
A liquid-crystal model for friction
摩擦的液晶模型
A space-time smooth artificial viscosity method with wavelet noise indicator and shock collision scheme, Part 1: The 1-D case
具有小波噪声指标和冲击碰撞方案的时空平滑人工粘度方法,第 1 部分:一维情况
  • DOI:
    10.1016/j.jcp.2019.02.049
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Raaghav Ramani;Jon Reisner;Steve Shkoller
  • 通讯作者:
    Steve Shkoller

Steve Shkoller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steve Shkoller', 18)}}的其他基金

Collaborative Research: Shock formation, shock development, and the propagation of singularities in fluid dynamics
合作研究:激波形成、激波发展以及流体动力学中奇点的传播
  • 批准号:
    2307680
  • 财政年份:
    2023
  • 资助金额:
    $ 21.75万
  • 项目类别:
    Continuing Grant
Shock formation and interface motion in fluids
流体中的激波形成和界面运动
  • 批准号:
    2007606
  • 财政年份:
    2020
  • 资助金额:
    $ 21.75万
  • 项目类别:
    Standard Grant
Summer School and Workshop: Mathematical Analysis of Water Waves and Related Models
暑期学校和研讨会:水波及相关模型的数学分析
  • 批准号:
    1700416
  • 财政年份:
    2017
  • 资助金额:
    $ 21.75万
  • 项目类别:
    Standard Grant
A Taught Course Centre for the Mathematical Sciences based at Oxford, Warwick, Imperial, Bath and Bristol.
位于牛津、沃里克、帝国理工、巴斯和布里斯托尔的数学科学教学课程中心。
  • 批准号:
    EP/J500902/1
  • 财政年份:
    2011
  • 资助金额:
    $ 21.75万
  • 项目类别:
    Training Grant
Well-posedness of moving interface problems in perfect fluids
完美流体中移动界面问题的适定性
  • 批准号:
    1001850
  • 财政年份:
    2010
  • 资助金额:
    $ 21.75万
  • 项目类别:
    Continuing Grant
Well-posedness of moving interface problems in perfect fluids
完美流体中移动界面问题的适定性
  • 批准号:
    0701056
  • 财政年份:
    2007
  • 资助金额:
    $ 21.75万
  • 项目类别:
    Standard Grant
ITR: Analysis and Simulation of Interface Dynamics in Multiphase Fluids and Solids
ITR:多相流体和固体界面动力学的分析和模拟
  • 批准号:
    0313370
  • 财政年份:
    2003
  • 资助金额:
    $ 21.75万
  • 项目类别:
    Standard Grant
The Lagrangian Averaged Navier-Stokes Equations with Applications to Turbulence Modeling
拉格朗日平均纳维-斯托克斯方程及其在湍流建模中的应用
  • 批准号:
    0105004
  • 财政年份:
    2001
  • 资助金额:
    $ 21.75万
  • 项目类别:
    Standard Grant

相似国自然基金

柔嫩艾美耳球虫子孢子入侵关键结构 Moving Junction 的分子基础与功能研究
  • 批准号:
    31201699
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRCNS: Deconstructing dynamics of motor cortex in freely moving behavior
CRCNS:解构自由运动行为中运动皮层的动力学
  • 批准号:
    10666693
  • 财政年份:
    2022
  • 资助金额:
    $ 21.75万
  • 项目类别:
CRCNS: Deconstructing dynamics of motor cortex in freely moving behavior
CRCNS:解构自由运动行为中运动皮层的动力学
  • 批准号:
    10610495
  • 财政年份:
    2022
  • 资助金额:
    $ 21.75万
  • 项目类别:
Dynamics of granular raft on a moving interface: assembly, structure, and property
移动界面上颗粒筏的动力学:装配、结构和属性
  • 批准号:
    2032354
  • 财政年份:
    2021
  • 资助金额:
    $ 21.75万
  • 项目类别:
    Standard Grant
Development of joint moving-interface inversion methodology for geophysical DC resistivity and time-domain EM data
地球物理直流电阻率和时域电磁数据联合动界面反演方法的开发
  • 批准号:
    543677-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 21.75万
  • 项目类别:
    Collaborative Research and Development Grants
Wireless optical imaging, optogenetic stimulation and neurophysiological recording to study to neural foundations of natural freely moving behaviors in primates.
无线光学成像、光遗传学刺激和神经生理学记录,用于研究灵长类动物自然自由运动行为的神经基础。
  • 批准号:
    10260530
  • 财政年份:
    2020
  • 资助金额:
    $ 21.75万
  • 项目类别:
Wireless optical imaging, optogenetic stimulation and neurophysiological recording to study to neural foundations of natural freely moving behaviors in primates.
无线光学成像、光遗传学刺激和神经生理学记录,用于研究灵长类动物自然自由运动行为的神经基础。
  • 批准号:
    10056623
  • 财政年份:
    2020
  • 资助金额:
    $ 21.75万
  • 项目类别:
Development of joint moving-interface inversion methodology for geophysical DC resistivity and time-domain EM data
地球物理直流电阻率和时域电磁数据联合动界面反演方法的开发
  • 批准号:
    543677-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 21.75万
  • 项目类别:
    Collaborative Research and Development Grants
CAREER: Analysis of Partial Differential Equations in Moving Interface Problems
职业:移动界面问题中的偏微分方程分析
  • 批准号:
    1653161
  • 财政年份:
    2017
  • 资助金额:
    $ 21.75万
  • 项目类别:
    Continuing Grant
Development of the three-phase LBM for moving boundary flows by the interface-adaptive lattice method (Building Cube Method)
通过界面自适应晶格法(建筑立方体法)开发用于移动边界流的三相LBM
  • 批准号:
    17K06155
  • 财政年份:
    2017
  • 资助金额:
    $ 21.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Diffusion Supression of Polluted Nano Particles and Mist using Discharge on the Moving Magnetic Fluid Interface and Development of Purification Technology
动磁流体界面放电抑制污染纳米粒子和雾气的扩散及净化技术的发展
  • 批准号:
    16K14151
  • 财政年份:
    2016
  • 资助金额:
    $ 21.75万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了