Well-posedness of moving interface problems in perfect fluids

完美流体中移动界面问题的适定性

基本信息

  • 批准号:
    1001850
  • 负责人:
  • 金额:
    $ 27.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

The Euler equations are recognized as a suitable model for multiphase fluid flows with moving boundaries and interfaces at large Reynolds number, and they serve as the basic mathematical model even when other physical phenomena are coupled to the fluid motion. Despite more than two centuries of mathematical analysis of these complicated nonlinear equations, the existence theory for these systems of hyperbolic moving free-boundary PDE, which model ideal compressible and incompressible fluid flow, remains a significant challenge. This includes a single mass of fluid, gas, or liquid, moving inside of a vacuum that creates degeneracy in the flow, as well as multiphase immiscible fluids separated by surfaces of discontinuity, across which velocity components experience jumps. Recently, the Principal Investigator of this project has been developing a novel set of analytical tools designed to establish existence theories and well-posedness theorems for multidimensional moving free-boundary hyperbolic problems, wherein the geometry of the free-surface interacts with the motion of the fluid at leading order. These analytical tools apply to the 3-dimensional incompressible and compressible free-surface Euler equations with or without surface tension on the boundary, and coupled fluid-structure interaction problems. The fundamental ideas rely on new anisotropic smoothing operators that permit approximations of the Euler equations that retain the geometric structures of transport and boundary regularity, and for which existence of smooth solutions is provable, and a new class of degenerate parabolic approximations to characteristic and degenerate hyperbolic systems of conservation laws. The proposal addresses the well-posedness of the motion of a multidimensional compressible gas in the so-called physical vacuum singularity, modeled by the free-boundary compressible Euler equations with sound speed vanishing at the boundary at the rate of the square-root of the distance to vacuum; well-posedness of supersonic 2-D vortex sheets and surfaces of discontinuity; and well-posedness for the motion of a relativistic fluid in vacuum, modeled by the Euler-Einstein equations.Multiphase fluid flows with moving interfaces, modeled by the Euler equations, play a central role in a multitude of physical and engineering applications, ranging from the creation of hurricanes due to wind blowing on top of the ocean surface to the atomization of liquid fuel jets in combustion chambers to the motion of astrophysical bodies such as gaseous stars. The analytical understanding gained in this work may have important ramifications in the understanding of basic physical phenomena, which has hitherto been poorly understood. In addition to basic wave motion and mixing that occurs in the motion of interfaces between water and air, other conventional examples include the interface between air and helium under shock wave interaction, the so-called Richtmyer-Meshkov instabilities between two gases, the behavior of a gas bubble in a liquid in a shock wave, and liquid fuels that are usually burned by first atomizing a fuel jet to increase the surface area and hence the evaporation rate. We can also add the prediction of spray behavior, for which the initial atomization is both the most critical and the least understood aspect of the spray. Understanding the short-time nonlinear balance that occurs in the Rayleigh-Taylor instability should be quite important for the understanding of jets, which become unstable when capillary effects are large due to waves longer than the diameter, thus breaking up into a stream of relatively large drops.
欧拉方程被认为是一个合适的模型,多相流体流动的移动边界和界面在大雷诺数,他们作为基本的数学模型,即使当其他物理现象耦合到流体运动。尽管对这些复杂的非线性方程进行了两个多世纪的数学分析,但这些双曲移动自由边界PDE系统的存在性理论仍然是一个重大的挑战。这包括单个流体、气体或液体的质量,在真空内部移动,在流动中产生简并,以及由不连续表面分离的多相不混溶流体,速度分量在不连续表面上经历跳跃。最近,该项目的主要研究者一直在开发一套新的分析工具,旨在建立多维移动自由边界双曲问题的存在性理论和适定性定理,其中自由表面的几何形状与领先阶流体的运动相互作用。这些分析工具适用于三维不可压缩和可压缩的自由表面欧拉方程的边界上有或没有表面张力,耦合的流体-结构相互作用的问题。 基本思想依赖于新的各向异性平滑算子,允许近似欧拉方程,保留传输和边界规则性的几何结构,并且光滑解的存在性是可证明的,以及一类新的特征和退化的退化抛物逼近。双曲守恒律系统。 该提案解决了多维可压缩气体在所谓的物理真空奇点中运动的适定性问题,该奇点由自由边界可压缩欧拉方程模拟,声速在边界处以到真空距离的平方根的速率消失;超音速二维涡面和不连续表面的适定性;真空中相对论性流体运动的适定性和适定性。由欧拉方程模拟的具有运动界面的多相流体流动在许多物理和工程应用中起着核心作用,范围从由于风吹在海洋表面上而产生的飓风到燃烧室中液体燃料喷射的雾化,再到诸如气态恒星之类的天体物理体的运动。在这项工作中获得的分析性理解可能对理解基本物理现象产生重要影响,迄今为止对这些现象的理解很少。除了在水和空气之间的界面的运动中发生的基本波动和混合之外,其他常规示例包括在冲击波相互作用下的空气和氦气之间的界面、两种气体之间的所谓的Richtmyer-Meshkov不稳定性、冲击波中液体中气泡的行为、以及通常通过首先雾化燃料射流以增加表面积并因此增加蒸发速率来燃烧的液体燃料。我们还可以添加喷雾行为的预测,其中初始雾化是喷雾的最关键和最不了解的方面。 理解瑞利-泰勒不稳定性中发生的短时非线性平衡对于理解射流应该是非常重要的,当毛细效应由于波的长度大于直径而变得很大时,射流变得不稳定,从而分裂成相对较大的液滴流。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steve Shkoller其他文献

The geometry of maximal development and shock formation for the Euler equations in multiple space dimensions
多维空间欧拉方程最大发展和激波形成的几何
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Steve Shkoller;V. Vicol
  • 通讯作者:
    V. Vicol
A liquid-crystal model for friction
摩擦的液晶模型
A space-time smooth artificial viscosity method with wavelet noise indicator and shock collision scheme, Part 1: The 1-D case
具有小波噪声指标和冲击碰撞方案的时空平滑人工粘度方法,第 1 部分:一维情况
  • DOI:
    10.1016/j.jcp.2019.02.049
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Raaghav Ramani;Jon Reisner;Steve Shkoller
  • 通讯作者:
    Steve Shkoller

Steve Shkoller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steve Shkoller', 18)}}的其他基金

Collaborative Research: Shock formation, shock development, and the propagation of singularities in fluid dynamics
合作研究:激波形成、激波发展以及流体动力学中奇点的传播
  • 批准号:
    2307680
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Shock formation and interface motion in fluids
流体中的激波形成和界面运动
  • 批准号:
    2007606
  • 财政年份:
    2020
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Summer School and Workshop: Mathematical Analysis of Water Waves and Related Models
暑期学校和研讨会:水波及相关模型的数学分析
  • 批准号:
    1700416
  • 财政年份:
    2017
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Analysis of moving interface problems in fluid dynamics
流体动力学中的运动界面问题分析
  • 批准号:
    1301380
  • 财政年份:
    2013
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
A Taught Course Centre for the Mathematical Sciences based at Oxford, Warwick, Imperial, Bath and Bristol.
位于牛津、沃里克、帝国理工、巴斯和布里斯托尔的数学科学教学课程中心。
  • 批准号:
    EP/J500902/1
  • 财政年份:
    2011
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Training Grant
Well-posedness of moving interface problems in perfect fluids
完美流体中移动界面问题的适定性
  • 批准号:
    0701056
  • 财政年份:
    2007
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
ITR: Analysis and Simulation of Interface Dynamics in Multiphase Fluids and Solids
ITR:多相流体和固体界面动力学的分析和模拟
  • 批准号:
    0313370
  • 财政年份:
    2003
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
The Lagrangian Averaged Navier-Stokes Equations with Applications to Turbulence Modeling
拉格朗日平均纳维-斯托克斯方程及其在湍流建模中的应用
  • 批准号:
    0105004
  • 财政年份:
    2001
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
  • 批准号:
    2337666
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
  • 批准号:
    2348018
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
  • 批准号:
    2307638
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Studies on behavior of solutions and the well-posedness for the nonlinear dispersive system in plasma physics
等离子体物理中非线性色散系统解的行为及适定性研究
  • 批准号:
    23KJ2028
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Effective use of multi-precision arithmetic on floating number system of digital computers aiming at numerical computations of differential equations with singulari or ill-posedness
针对奇异或不适定微分方程的数值计算,有效利用数字计算机浮点数系统的多精度运算
  • 批准号:
    21H00999
  • 财政年份:
    2021
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Well-Posedness for Integrable Dispersive Partial Differential Equations
可积色散偏微分方程的适定性
  • 批准号:
    2054194
  • 财政年份:
    2021
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Well-posedness of a model for the dynamics of fluids with the moving contact line
具有移动接触线的流体动力学模型的适定性
  • 批准号:
    21K13826
  • 财政年份:
    2021
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Research on the well-posedness, regularity, and justification of numerical methods for fluid problems and related boundary-value problems
流体问题及相关边值问题数值方法的适定性、规律性和合理性研究
  • 批准号:
    20K14357
  • 财政年份:
    2020
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Well-posedness for the equation on electrohydrodynamics
电流体动力学方程的适定性
  • 批准号:
    20K14350
  • 财政年份:
    2020
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Hamilton-Jacobi equations on metric measure spaces
度量测度空间上的 Hamilton-Jacobi 方程
  • 批准号:
    20K22315
  • 财政年份:
    2020
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了