Spectral properties of quasicrystals via dynamical methods

通过动力学方法研究准晶体的光谱特性

基本信息

  • 批准号:
    1301515
  • 负责人:
  • 金额:
    $ 14.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

The project focuses on the development of new methods and the improvement of existing techniques in the modern theory of dynamical systems that can be applied to study spectral properties of the most prominent models of quasicrystals, in particular, of discrete Schrodinger operators with Fibonacci and Sturmian potentials. The specific models to be studied are discrete Schrodinger operators with Sturmian potentials, the square (or cubic) Fibonacci Hamiltonian, the Fibonacci quantum Ising model, quantum walks for quasicrystals, and the labyrinth model. We intend to study the deep relations between these models and hyperbolic dynamical systems that allow us to confirm rigorously a series of previous heuristic and experimental observations regarding quasicrystals made by physicists. In particular, for discrete Schrodinger operators with Sturmian potentials we expect to show that the Hausdorff dimension of the spectrum is the same for almost every frequency. For square and cubic Fibonacci Hamiltonians we intend to provide an understanding of the transition of the spectrum from an interval to a Cantor set with the change of the coupling constant, and establish absolute continuity of the density of states measure in the small coupling regime. Also, we hope to prove that the square continuum Fibonacci Hamiltonian with large couplings has density of states measure of a mixed (a.c. and singular continuous) type, providing the first example of an ergodic family of Schrodinger operators with this property.The problems in this project are related to mathematical models of quasicrystals. The properties of quasicrystals were heavily studied by physicists and chemists, and it is important to give an explanation of the observed experimental and numerical results based on a rigorous mathematical analysis. Potentially this will not only explain the behavior of existing models but will also help to predict the behavior of new ones. The tools that we intend to develop will undoubtedly find applications in other parts of mathematics as well. For example, in order to prove absolute continuity of density of states measures for some models, we are studying the questions on absolute continuity of convolutions of singular measures. These questions appear frequently in number theory, analysis, dynamics, probability, and geometric measure theory. In additin, the relations between different parts of mathematics (in this case, between spectral theory and dynamical systems) give beautiful evidence of the unity of mathematics. Various problems closely related to the project will be suggested to graduate and undergraduate students at UC-Irvine, thereby initiating them into, or increasing their involvement in, scientific activities. The principal investigator considers such educational and training aspects to be very essential.
该项目的重点是开发现代动力系统理论中的新方法和改进现有技术,这些方法和技术可用于研究最著名的准晶模型的谱特性,特别是具有斐波那契和斯特姆势的离散薛定谔算子的谱特性。要研究的具体模型是离散薛定谔算子与Sturmian势,平方(或立方)斐波那契哈密顿量,斐波那契量子伊辛模型,量子行走准晶体,迷宫模型。我们打算研究这些模型和双曲动力学系统之间的深层关系,使我们能够严格地确认一系列以前的启发式和实验观察准晶体的物理学家。特别是,对于离散薛定谔算子与Sturmian潜力,我们希望表明,Hausdorff维数的频谱是相同的,几乎每一个频率。对于平方和立方斐波那契哈密顿量,我们打算提供一个理解的过渡的频谱从一个间隔到一个康托集的耦合常数的变化,并建立绝对连续性的状态密度测量在小耦合制度。此外,我们希望证明具有大耦合的平方连续Fibonacci哈密顿量具有混合(a.c.)和奇异连续)类型,提供了具有这种性质的遍历薛定谔算子族的第一个例子.本项目的问题与准晶的数学模型有关.准晶体的性质被物理学家和化学家大量研究,重要的是要根据严格的数学分析来解释观察到的实验和数值结果。这不仅可以解释现有模型的行为,还可以帮助预测新模型的行为。我们打算开发的工具无疑也将在数学的其他部分找到应用。例如,为了证明某些模型的态密度测度的绝对连续性,我们研究了奇异测度卷积的绝对连续性问题。这些问题经常出现在数论、分析、动力学、概率论和几何测度论中。此外,数学的不同部分之间的关系(在这种情况下,谱理论和动力系统之间的关系)为数学的统一性提供了美丽的证据。与该项目密切相关的各种问题将被建议给加州大学欧文分校的研究生和本科生,从而使他们开始参与或增加他们对科学活动的参与。主要研究者认为这种教育和培训方面非常重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anton Gorodetski其他文献

Conservative homoclinic bifurcations and some applications

Anton Gorodetski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anton Gorodetski', 18)}}的其他基金

Non-Stationary Random Dynamical Systems and Applications
非平稳随机动力系统和应用
  • 批准号:
    2247966
  • 财政年份:
    2023
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant
Newhouse Phenomena in Celestial Mechanics and Spectral Theory
天体力学和谱理论中的纽豪斯现象
  • 批准号:
    1855541
  • 财政年份:
    2019
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Continuing Grant
Quantitative characteristics of the hyperbolic sets arising in conservative dynamics, celestial mechanics, and spectral theory
保守动力学、天体力学和谱理论中出现的双曲集的定量特征
  • 批准号:
    0901627
  • 财政年份:
    2009
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant

相似国自然基金

镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
  • 批准号:
    20977008
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
层状钴基氧化物热电材料的组织取向度与其性能关联规律研究
  • 批准号:
    50702003
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Soft quasicrystals - Theoretical studies on the universality and new physical properties of quasicrystals
软准晶——准晶普适性和新物理性质的理论研究
  • 批准号:
    22540375
  • 财政年份:
    2010
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ab initio study of electronic properties: superconductors, heavy fermions, quasicrystals and INVAR alloys.
电子特性从头开始研究:超导体、重费米子、准晶体和 INVAR 合金。
  • 批准号:
    41973-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Discovery Grants Program - Individual
Ab initio study of electronic properties: superconductors, heavy fermions, quasicrystals and INVAR alloys.
电子特性从头开始研究:超导体、重费米子、准晶体和 INVAR 合金。
  • 批准号:
    41973-2005
  • 财政年份:
    2008
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Discovery Grants Program - Individual
Panoscopic structural properties and physical properties in quasicrystals containing rare-earth metals
含有稀土金属的准晶体的全景结构特性和物理特性
  • 批准号:
    20900102
  • 财政年份:
    2008
  • 资助金额:
    $ 14.5万
  • 项目类别:
Magnetic impurity in the quasicrystals and search for new physical properties
准晶体中的磁性杂质和寻找新的物理性质
  • 批准号:
    20560612
  • 财政年份:
    2008
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ab initio study of electronic properties: superconductors, heavy fermions, quasicrystals and INVAR alloys.
电子特性从头开始研究:超导体、重费米子、准晶体和 INVAR 合金。
  • 批准号:
    41973-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Discovery Grants Program - Individual
The Discovery of Polymeric Quasicrystals : Theoretical Study of Structures and Physical Properties of Novel Quasicrystalline Materials
聚合准晶的发现:新型准晶材料结构和物理性质的理论研究
  • 批准号:
    19540365
  • 财政年份:
    2007
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ab initio study of electronic properties: superconductors, heavy fermions, quasicrystals and INVAR alloys.
电子特性从头开始研究:超导体、重费米子、准晶体和 INVAR 合金。
  • 批准号:
    41973-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Discovery Grants Program - Individual
Synthesis, structure and electronic properties of noble quasicrystals under high pressure and temperature
高温高压惰性准晶的合成、结构及电子性质
  • 批准号:
    17360308
  • 财政年份:
    2005
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ab initio study of electronic properties: superconductors, heavy fermions, quasicrystals and INVAR alloys.
电子特性从头开始研究:超导体、重费米子、准晶体和 INVAR 合金。
  • 批准号:
    41973-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了