Quantitative characteristics of the hyperbolic sets arising in conservative dynamics, celestial mechanics, and spectral theory
保守动力学、天体力学和谱理论中出现的双曲集的定量特征
基本信息
- 批准号:0901627
- 负责人:
- 金额:$ 26.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The project focuses on quantitative properties (such as Hausdorff dimension and thickness) of hyperbolic sets that appear in conservative dynamics, celestial mechanics, and spectral theory. The first part of the project deals with hyperbolic sets generated by a conservative homoclinic bifurcation. These hyperbolic sets have large Hausdorff dimension, and that leads to a series of applications. In particular, this phenomenon can be applied to study the oscillatory motions in the three-body problem. A motion in a three-body problem is called "oscillatory" if for an unbounded increasing sequence of times the diameter of the system appears as bounded, while for another unbounded sequence of times the diameter of the system goes to infinity. Oscillatory motions are directly related to homoclinic pictures and invariant hyperbolic sets. The goal of this part of the project is to demonstrate the existence of homoclinic bifurcations in some restricted versions of the three-body problem and to show that the set of oscillatory motions has full Hausdorff dimension for many parameter values. Another part of the project is an application of the theory of hyperbolic dynamical systems to spectral theory. Namely, using the hyperbolicity of the so-called trace map and estimating some quantitative characteristics of its invariant sets, one can derive new properties of the spectrum of the discrete Schrodinger operator with Fibonacci potential. That will provide new insights on the properties of quasicrystals. Many of the problems considered in the project were initially formulated by physicists, and results may have applications to the theory of quasicrystals, to comet dynamics within the solar system, and to a number of other problems in physics, chemistry, and astronomy. Various problems closely related to the project will be suggested to graduate and undergraduate students at UC-Irvine, thereby initiating them into or increasing their involvement in scientific activities. The principal investigator considers such educational and training aspects to be central to the project.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该项目专注于守恒动力学、天体力学和谱理论中出现的双曲集的定量性质(如Hausdorff维度和厚度)。该项目的第一部分处理由保守同宿分支产生的双曲集。这些双曲集具有很大的Hausdorff维数,这导致了一系列的应用。特别是,这一现象可用于研究三体问题中的振荡运动。在三体问题中,如果对于一个无限递增的时间序列,系统的直径看起来是有界的,而对于另一个无限的时间序列,系统的直径是无穷大的,那么这个运动称为“振荡”。振荡运动与同宿图和不变双曲集直接相关。这一部分的目的是证明三体问题的某些受限形式的同宿分支的存在性,并证明对于许多参数值,振荡运动集具有全Hausdorff维。该项目的另一个部分是双曲动力系统理论在光谱理论中的应用。也就是说,利用所谓迹映射的双曲性和估计其不变集的一些定量特征,可以得到具有斐波那契势的离散薛定谔算子的谱的新性质。这将为准晶的性质提供新的见解。该项目中考虑的许多问题最初是由物理学家提出的,结果可能适用于准晶理论、太阳系内的彗星动力学以及物理、化学和天文学中的其他一些问题。将向加州大学欧文分校的研究生和本科生提出与该项目密切相关的各种问题,从而启动或增加他们对科学活动的参与。首席调查员认为,这些教育和培训方面对该项目至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anton Gorodetski其他文献
Conservative homoclinic bifurcations and some applications
- DOI:
10.1134/s0081543809040063 - 发表时间:
2010-02-03 - 期刊:
- 影响因子:0.400
- 作者:
Anton Gorodetski;Vadim Kaloshin - 通讯作者:
Vadim Kaloshin
Anton Gorodetski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anton Gorodetski', 18)}}的其他基金
Non-Stationary Random Dynamical Systems and Applications
非平稳随机动力系统和应用
- 批准号:
2247966 - 财政年份:2023
- 资助金额:
$ 26.48万 - 项目类别:
Standard Grant
Newhouse Phenomena in Celestial Mechanics and Spectral Theory
天体力学和谱理论中的纽豪斯现象
- 批准号:
1855541 - 财政年份:2019
- 资助金额:
$ 26.48万 - 项目类别:
Continuing Grant
Spectral properties of quasicrystals via dynamical methods
通过动力学方法研究准晶体的光谱特性
- 批准号:
1301515 - 财政年份:2013
- 资助金额:
$ 26.48万 - 项目类别:
Standard Grant
相似国自然基金
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
大型机械结构非线性特性的实验辨识和物理仿真
- 批准号:50405043
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Continuing Grant
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
- 批准号:
10749672 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
The effects of human lower limb immobilization on regenerative skeletal muscle stem cell characteristics in vitro
人体下肢固定对体外再生骨骼肌干细胞特性的影响
- 批准号:
MR/Y033787/1 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Research Grant
Naturalistic Social Communication in Autistic Females: Identification of Speech Prosody Markers
自闭症女性的自然社交沟通:语音韵律标记的识别
- 批准号:
10823000 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Role of Frizzled 5 in NK cell development and antiviral host immunity
Frizzled 5 在 NK 细胞发育和抗病毒宿主免疫中的作用
- 批准号:
10748776 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Uncovering the Functional Effects of Neurotrophins in the Auditory Brainstem
揭示神经营养素对听觉脑干的功能影响
- 批准号:
10823506 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Socio-Emotional Characteristics in Early Childhood and Offending Behaviour in Adolescence
幼儿期的社会情感特征和青春期的犯罪行为
- 批准号:
ES/Z502601/1 - 财政年份:2024
- 资助金额:
$ 26.48万 - 项目类别:
Fellowship