Newhouse Phenomena in Celestial Mechanics and Spectral Theory

天体力学和谱理论中的纽豪斯现象

基本信息

  • 批准号:
    1855541
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

The fact that an intersection of small (zero measure, nowhere dense) sets can be persistent, i.e. cannot be destroyed by a small translation (or even more general class of perturbations of the sets) has many interesting and important consequences in dynamical systems (homoclinic tangencies), number theory (sets of irrational numbers represented by continuous fractions of bounded type), spectral theory (operators with separable potentials), and other areas of mathematics. One of the most famous applications is what nowadays called Newhouse phenomenon - existence of open sets of smooth diffeomorphisms of a two-dimensional surface with persistent homoclinic tangencies. The goal of this project is to improve our understanding of general questions on sums/intersections of Cantor sets and Newhouse phenomena for conservative and dissipative dynamical systems, and also to go back to the original problems (e.g. from celestial mechanics), as well as to consider some new models (e.g. from spectral theory), where these results can be applied. Mentoring students is an essential part of the project. Numerous problems closely related to the proposed project will be suggested to graduate and undergraduate students initiating and increasing their involvement into scientific activities and research.More specifically, the PI plans to study Newhouse phenomena in the three body problems (such as Sitnikov problem, circular restricted three body problem, and collinear restricted three body problem, as well as in non-restricted versions), and to apply the results on conservative homoclinic bifurcations to the questions on dynamics near infinity. In particular, he intends to study the set of oscillatory motions in these models, and at the same time to show that the set of stable motions that start in some given bounded domain can be unbounded. Also, the structure of spectra of Schrodinger operators on two-dimensional lattice with separable potentials (in particular, Square Fibonacci Hamiltonian both in discrete and continuous version) will be studied. Questions on sums of Cantor sets within a finite-parameter family will be considered, with the famous Palis' Conjecture on the structure of sums of affine Cantor sets on a horizon. Newhouse phenomena and their consequences in billiard maps will be studied as well.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
事实上,一个小的交集(零测度,无处稠密)集可以是持久的,即不能被一个小的平移所破坏。(或更一般的集合扰动类)在动力系统中有许多有趣而重要的结果(同宿切线),数论(由有界类型的连续分数表示的无理数集),谱理论(具有可分离势的算子)和其他数学领域。 最著名的应用之一是现在所谓的纽豪斯现象-存在一个二维表面的光滑同胚持续同宿切线的开放集。 这个项目的目标是提高我们对保守和耗散动力系统的康托集和纽豪斯现象的和/相交的一般问题的理解,并回到原来的问题(例如从天体力学),以及考虑一些新的模型(例如从谱理论),这些结果可以应用。 指导学生是该项目的重要组成部分。 许多问题密切相关的拟议项目将建议研究生和本科生发起和增加他们的参与到科学活动和研究。更具体地说,PI计划研究纽豪斯现象的三个机构的问题(如Sitnikov问题,圆形限制性三体问题,共线限制性三体问题,以及非限制性版本),并将保守同宿分支的结果应用于无穷远动力学问题。 特别是,他打算研究的一套振荡运动在这些模型,并在同一时间表明,一套稳定的运动,开始在一些给定的有界域可以无界。 此外,我们还将研究具有可分离势的二维格点上的薛定谔算子(特别是离散和连续形式的平方Fibonacci哈密顿量)的谱结构。 在有限参数族中康托集的和的问题将被考虑,与著名的帕利斯猜想的结构上的仿射康托集的总和在地平线上。 纽豪斯现象及其在台球地图中的后果也将被研究。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thomae's function and the space of ergodic measures
托马函数和遍历测度空间
  • DOI:
    10.1080/14689367.2023.2174000
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gorodetski, Anton;Luna, Alexandro
  • 通讯作者:
    Luna, Alexandro
The Spectrum of Schrödinger Operators with Randomly Perturbed Ergodic Potentials
具有随机扰动遍历势的薛定谔算子谱
  • DOI:
    10.1007/s00039-023-00632-z
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Avila, Artur;Damanik, David;Gorodetski, Anton
  • 通讯作者:
    Gorodetski, Anton
On the Spectra of Separable 2D Almost Mathieu Operators
  • DOI:
    10.1007/s00023-021-01080-x
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alberto Takase
  • 通讯作者:
    Alberto Takase
On the spectrum of the periodic Anderson–Bernoulli model
周期性安德森伯努利模型的谱
Phase Transition of Logarithmic Capacity for the Uniform Gδ-Sets
均匀 Gδ 组对数容量的相变
  • DOI:
    10.1007/s11118-020-09896-8
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Kleptsyn, Victor;Quintino, Fernando
  • 通讯作者:
    Quintino, Fernando
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anton Gorodetski其他文献

Conservative homoclinic bifurcations and some applications

Anton Gorodetski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anton Gorodetski', 18)}}的其他基金

Non-Stationary Random Dynamical Systems and Applications
非平稳随机动力系统和应用
  • 批准号:
    2247966
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Spectral properties of quasicrystals via dynamical methods
通过动力学方法研究准晶体的光谱特性
  • 批准号:
    1301515
  • 财政年份:
    2013
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Quantitative characteristics of the hyperbolic sets arising in conservative dynamics, celestial mechanics, and spectral theory
保守动力学、天体力学和谱理论中出现的双曲集的定量特征
  • 批准号:
    0901627
  • 财政年份:
    2009
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似海外基金

SHINE: The Evolution of Coronal Dimmings and Their Relationship to Eruptive Phenomena
闪耀:日冕变暗的演变及其与喷发现象的关系
  • 批准号:
    2400789
  • 财政年份:
    2025
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CAREER: Emergent quantum phenomena in epitaxial thin films of topological Dirac semimetal and its heterostructures
职业:拓扑狄拉克半金属及其异质结构外延薄膜中的量子现象
  • 批准号:
    2339309
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
  • 批准号:
    2339723
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
  • 批准号:
    EP/Z000297/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
Understanding quantum emergent phenomena in Shastry-Sutherland model systems
了解 Shastry-Sutherland 模型系统中的量子涌现现象
  • 批准号:
    2327555
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Persistent Optical Phenomena in Oxide Semiconductors
氧化物半导体中的持久光学现象
  • 批准号:
    2335744
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CAREER: Transport Phenomena and the Uptake of Foreign Species during Crystal Growth
职业:晶体生长过程中的传输现象和外来物质的吸收
  • 批准号:
    2339644
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Photo-thermoelectric Phenomena in Bulk and Nanomaterials for Better Optical Sensing
职业:了解块状和纳米材料中的光热电现象以实现更好的光学传感
  • 批准号:
    2340728
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CAREER: Fundamental phenomena in magnon condensates
职业:磁振子凝聚体的基本现象
  • 批准号:
    2338060
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Discovery of Compounds containing Frustrated Vanadium Nets with Emergent Electronic Phenomena
发现含有受阻钒网的化合物并产生电子现象
  • 批准号:
    2350519
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了