Geometry in combinatorics

组合数学中的几何

基本信息

  • 批准号:
    1301548
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

The project is about connections of combinatorics and geometry with the rest of mathematics. There are three main phenomena that the PI plans to investigate. The first is the appearance of rigid geometric structures as answers (or conjectured answers) to Turán- and Ramsey-type problems. Here, the goal is to understand why these structures appear, and to find a systematic way to go from a combinatorial problem to such a structure. The second phenomenon arises in the problems of approximation of large point sets. Here, the two sides of the problem lead to two different areas: the lower bounds to algebraic topology, and the upper bounds to logic. The PI will work on extending the existing techniques, with a goal of perfecting them to the point of eliminating the guesswork that they currently require. The final phenomenon concerns geometric incidence problems. The PI will try to generalize the existing topological approaches to finite field setting. The motivation here is the superficial similarity between the proofs in Euclidean space, such as the resolution of the distinct distance problem, and the proofs of sum-product-type results for dense sets in the finite field setting.The goal of this project is to strengthen the ties of combinatorics with areas of mathematics that are not commonly linked with combinatorics. Besides the immediate benefit of making progress on concrete combinatorial problems, the aim is to create bridges that will allow specialists in different fields to share insights. Furthermore, geometry is able to appeal to our imagination directly, and consequently can serve as a catalyst in combinatorial education.
这个项目是关于组合学和几何学与其他数学的联系。PI计划调查的主要现象有三个。第一个是刚性几何结构的出现,作为图兰和拉姆齐型问题的答案(或简化的答案)。在这里,我们的目标是理解为什么这些结构会出现,并找到一种系统的方法从组合问题到这样的结构。第二个现象出现在大点集的近似问题中。在这里,问题的两个方面导致两个不同的领域:代数拓扑的下界和逻辑的上界。PI将致力于扩展现有的技术,目标是完善它们,以消除目前需要的猜测。最后一个现象涉及几何关联问题。PI将尝试将现有的拓扑方法推广到有限域设置。这里的动机是在欧几里得空间中的证明之间的表面相似性,如不同距离问题的解决,和有限域设置中稠密集的和积型结果的证明。这个项目的目标是加强组合数学与数学领域的联系,这些领域通常与组合数学无关。 除了在具体的组合问题上取得进展的直接好处外,目的是建立桥梁,使不同领域的专家能够分享见解。此外,几何能够直接吸引我们的想象力,因此可以作为组合教育的催化剂。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boris Bukh其他文献

Discrete Kakeya-type problems and small bases
  • DOI:
    10.1007/s11856-009-0115-9
  • 发表时间:
    2010-01-16
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Noga Alon;Boris Bukh;Benny Sudakov
  • 通讯作者:
    Benny Sudakov

Boris Bukh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boris Bukh', 18)}}的其他基金

Problems in Extremal and Geometric Combinatorics
极值和几何组合问题
  • 批准号:
    2154063
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
CAREER: Algebraic extremal combinatorics
职业:代数极值组合学
  • 批准号:
    1555149
  • 财政年份:
    2016
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant

相似海外基金

On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combinatorics, Algebra, and Geometry of Simplicial Complexes
单纯复形的组合学、代数和几何
  • 批准号:
    2246399
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Statistical Physics Methods in Combinatorics, Algorithms, and Geometry
组合学、算法和几何中的统计物理方法
  • 批准号:
    MR/W007320/2
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Fellowship
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
  • 批准号:
    2305411
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Quotienting by Quasisymmetrics: Combinatorics and Geometry
拟对称求商:组合学和几何
  • 批准号:
    2246961
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
  • 批准号:
    2246962
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Discrete Geometry and Extremal Combinatorics
离散几何和极值组合
  • 批准号:
    2246659
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Triangulations: linking geometry and topology with combinatorics
三角测量:用组合学将几何和拓扑联系起来
  • 批准号:
    DP220102588
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Projects
CAREER: Discrete Geometry at the crossroads of Combinatorics and Topology
职业:组合学和拓扑学十字路口的离散几何
  • 批准号:
    2237324
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Structure versus Randomness in Algebraic Geometry and Additive Combinatorics
代数几何和加法组合中的结构与随机性
  • 批准号:
    2302988
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了