Problems in Extremal and Geometric Combinatorics
极值和几何组合问题
基本信息
- 批准号:2154063
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The development of extremal and geometric combinatorics has been informed by questions in a number of areas of mathematics, computer science and other disciplines. The aim of the project is both to develop general combinatorial tools of wide applicability and to solve specific combinatorial problems. Graduate and undergraduate students will be trained during this project.The specific problems to be tackled include algebraic and geometric questions related to Turan problems and Ramsey theory. Particular attention will be devoted to algebraic constructions. The aim here is to understand the apparent rigidity of many known constructions in the area, and develop more general techniques. It is expected that this will result in forging the connections between finite geometry and extremal combinatorics closer, enriching both areas. The project also considers several topics related to words and subsequences, as well as discrepancy theory. The potential impact includes better error-correcting codes and numerical algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
极值组合学和几何组合学的发展受到数学、计算机科学和其他学科许多领域的问题的影响。该项目的目的是开发具有广泛适用性的通用组合工具并解决特定的组合问题。该项目将对研究生和本科生进行培训。具体要解决的问题包括与图兰问题和拉姆齐理论相关的代数和几何问题。将特别关注代数构造。这里的目的是了解该领域许多已知结构的明显刚性,并开发更通用的技术。预计这将导致有限几何和极值组合之间的联系更加紧密,丰富这两个领域。该项目还考虑了与单词和子序列以及差异理论相关的几个主题。潜在影响包括更好的纠错码和数值算法。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Boris Bukh其他文献
Discrete Kakeya-type problems and small bases
- DOI:
10.1007/s11856-009-0115-9 - 发表时间:
2010-01-16 - 期刊:
- 影响因子:0.800
- 作者:
Noga Alon;Boris Bukh;Benny Sudakov - 通讯作者:
Benny Sudakov
Boris Bukh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Boris Bukh', 18)}}的其他基金
CAREER: Algebraic extremal combinatorics
职业:代数极值组合学
- 批准号:
1555149 - 财政年份:2016
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
相似国自然基金
带奇点的extremal度量和toric流形上的extremal度量
- 批准号:10901160
- 批准年份:2009
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Set-Systems: Probabilistic, Geometric and Extremal Perspectives
职业:集合系统:概率、几何和极值观点
- 批准号:
2237138 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
CAREER: Learning, testing, and hardness via extremal geometric problems
职业:通过极值几何问题学习、测试和硬度
- 批准号:
2145800 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Geometry of extremal Kahler metrics and geometric flows in Kahler settings
极值卡勒度量的几何和卡勒设置中的几何流
- 批准号:
0907778 - 财政年份:2009
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Extremal Kaehler Metrics and Geometric Flow Equations
极值凯勒度量和几何流动方程
- 批准号:
0406346 - 财政年份:2004
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Systems of geometric inequalities for relative measures of convex bodies in Minkowski spaces and corresponding extremal bodies
闵可夫斯基空间中凸体和相应极值体相对测度的几何不等式组
- 批准号:
5438652 - 财政年份:2004
- 资助金额:
$ 24万 - 项目类别:
Research Grants
Mathematical Sciences: Geometric Properties of Extremal Trajectories and Singularities of the Value Function
数学科学:极值轨迹的几何性质和值函数的奇异性
- 批准号:
9503356 - 财政年份:1995
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Extremal Problems in the Plane
数学科学:平面上的几何极值问题
- 批准号:
9500835 - 财政年份:1995
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Properties of Domains, Extremal Quasiconformal Mappings and Integrability of Conformal Mappings
数学科学:域的几何性质、极值拟共形映射和共形映射的可积性
- 批准号:
9203407 - 财政年份:1992
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Analysis: Research and Conformal Mapping, Extremal Length, and Riemann Surfaces
数学科学:几何分析:研究和共形映射、极值长度和黎曼曲面
- 批准号:
8701196 - 财政年份:1987
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Geometric Extremal Problems in Mathematical Statistics and Pattern Analysis
数理统计与模式分析中的几何极值问题
- 批准号:
7607203 - 财政年份:1976
- 资助金额:
$ 24万 - 项目类别:
Standard Grant