Solving Large Sum-of-Squares Optimization Problems in Control by Exploiting the Parallel Structure of Polya's Algorithm
利用Polya算法的并行结构解决控制中的大平方和优化问题
基本信息
- 批准号:1301660
- 负责人:
- 金额:$ 18.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-17 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop new parallel algorithms for control of nonlinear and uncertain systems. Computer architectures are changing, with multi-core chips and graphics cards replacing the CPU-based desktop powerhouses of years past. And with this change, a great deal of control systems technology is becoming obsolete. The problem is that the optimization algorithms being used by controls engineers are not built for the parallel processing environments we are encountering today. Increasingly, this will limit our ability to control the large and complex models we use to describe such phenomena as fusion energy and biological immunity. For this project, we have identified an approach to control of nonlinear or uncertain dynamics based on optimization using Polya's lemma. The unique feature of this approach is that the optimization algorithms when applied to Polya's lemma become almost perfectly parallel. This means that the algorithms we develop can run on almost any type of parallel computing architecture, including cluster computers and supercomputers. Considering that the computing power available on these platforms is currently more than 2,000,000 times great than that available on a single-core desktop, the result of this project will be an order of magnitude increase in the complexity of systems we can control. The project organization has three parts. i) develop parallel algorithms to formulate robust control problems on the simplex as semidefinite-programming problems via Polya's lemma ii) develop parallel primal-dual interior-point algorithms for the problem of robust control on cluster computing and multi-core architectures. Iii) expand the scope beyond robust control to nonlinear analysis and more general types of system uncertainty and include additional computing platforms such as GPU computing and supercomputing. The algorithms developed in this project will be posted online for free distribution using a public license.An order-of-magnitude increase in the complexity of systems that can be controled has important implications. For example, although detailed models of plasma in fusion reactors are available, those models are too complex to control efficiently using existing algorithms. The result is poor plasma confinement and inefficient energy production. If more detailed models can be used to improve plasma confinement, this has far-reaching implications for energy production. Additionally, biological models of interaction between cells in the immune system contain many different actors and are nonlinear and highly uncertain. An improved ability to analyze and control these models may lead to innovative forms of treatment for diseases such as cancer which is believed to be caused by a failure of the immune system to self-regulate. The PI has ongoing projects in both the areas of fusion research and immunology and this research will be integrated into these projects. Finally, this project has an international component with the University of Campinas in Brasil, including extended teaching exchanges in both Campinas and Chicago. This will strengthen the collaborative relationship between these two institutions and provide an international perspective and educational opportunity for students at both schools.
这个项目的目标是开发新的并行算法,用于非线性和不确定系统的控制。计算机体系结构正在发生变化,多核芯片和显卡取代了过去几年基于CPU的台式机。随着这种变化,大量的控制系统技术正在变得过时。问题是,控制工程师正在使用的优化算法并不是为我们今天遇到的并行处理环境构建的。这将越来越限制我们控制用于描述聚变能源和生物免疫等现象的大型复杂模型的能力。对于这个项目,我们已经确定了一种基于Polya引理的基于最优化的非线性或不确定动力学控制方法。这种方法的独特之处在于,当优化算法应用于Polya引理时,几乎是完全并行的。这意味着我们开发的算法可以在几乎任何类型的并行计算体系结构上运行,包括集群计算机和超级计算机。考虑到目前这些平台上可用的计算能力是单核台式机上可用计算能力的200多万倍,这个项目的结果将是我们可以控制的系统的复杂性增加了一个数量级。项目组织由三部分组成。I)利用Polya引理发展并行算法,将单纯形上的鲁棒控制问题转化为半定规划问题;ii)发展并行原-对偶内点算法,解决集群计算和多核体系结构上的鲁棒控制问题。Iii)将范围从稳健控制扩展到非线性分析和更一般类型的系统不确定性,并包括其他计算平台,如GPU计算和超级计算。在这个项目中开发的算法将发布在网上,使用公共许可证免费分发。可控系统复杂性的数量级增加具有重要意义。例如,尽管聚变反应堆中的等离子体的详细模型是可用的,但这些模型太复杂了,无法使用现有算法进行有效控制。其结果是糟糕的等离子体限制和低效的能源生产。如果能够使用更详细的模型来改善等离子体限制,这将对能源生产产生深远的影响。此外,免疫系统中细胞间相互作用的生物模型包含许多不同的因素,并且是非线性的和高度不确定的。分析和控制这些模型的能力的提高可能会导致癌症等疾病的创新治疗形式,这些疾病被认为是由于免疫系统未能自我调节而引起的。国际和平研究所在融合研究和免疫学领域都有正在进行的项目,这项研究将被纳入这些项目。最后,该项目还有一个与巴西坎皮纳斯大学合作的国际部分,包括在坎皮纳斯和芝加哥扩大教学交流。这将加强这两所学校之间的合作关系,并为两所学校的学生提供国际视野和教育机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Peet其他文献
Matthew Peet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Peet', 18)}}的其他基金
CIF: Small: An Algebraic, Convex, and Scalable Framework for Kernel Learning with Activation Functions
CIF:小型:具有激活函数的核学习的代数、凸性和可扩展框架
- 批准号:
2323532 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
Optimizing Risk in a Gauss-Markov Process - Energy Storage Strategies for Renewable Integration
优化高斯-马尔可夫过程中的风险 - 可再生能源并网的储能策略
- 批准号:
1933243 - 财政年份:2019
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
A Convex Computational Framework for Understanding and Controlling Nonlinear Systems
用于理解和控制非线性系统的凸计算框架
- 批准号:
1931270 - 财政年份:2019
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
War on Boundary Conditions - A Control-Oriented Framework for Partial Differential Equations
边界条件之战 - 偏微分方程的面向控制的框架
- 批准号:
1935453 - 财政年份:2019
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
CPS: Small: A Convex Framework for Control of Interconnected Systems over Delayed Networks
CPS:小型:延迟网络上互连系统控制的凸框架
- 批准号:
1739990 - 财政年份:2017
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
Stability Analysis of Large-Scale Nonlinear Systems using Parallel Computation
使用并行计算的大规模非线性系统的稳定性分析
- 批准号:
1538374 - 财政年份:2015
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
CAREER: A New Computational Framework for Control of Complex Systems
职业:复杂系统控制的新计算框架
- 批准号:
1301851 - 财政年份:2012
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
CAREER: A New Computational Framework for Control of Complex Systems
职业:复杂系统控制的新计算框架
- 批准号:
1151018 - 财政年份:2012
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
Solving Large Sum-of-Squares Optimization Problems in Control by Exploiting the Parallel Structure of Polya's Algorithm
利用Polya算法的并行结构解决控制中的大平方和优化问题
- 批准号:
1100376 - 财政年份:2011
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 18.67万 - 项目类别:
Fellowship
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
EAGER: Liutex-based Sub-Grid Model for Large Eddy Simulation of Turbulent Flow
EAGER:基于 Liutex 的湍流大涡模拟子网格模型
- 批准号:
2422573 - 财政年份:2024
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
- 批准号:
2422696 - 财政年份:2024
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
- 批准号:
2334171 - 财政年份:2024
- 资助金额:
$ 18.67万 - 项目类别:
Continuing Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 18.67万 - 项目类别:
Continuing Grant