Hodge Theory and Classical Algebraic Geometry
霍奇理论与经典代数几何
基本信息
- 批准号:1302880
- 负责人:
- 金额:$ 2.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-03-01 至 2014-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Ohio State University will host a conference entitled 'Hodge Theory and Classical Algebraic Geometry' on May 13--15, 2013. The conference will cover Hodge theory, classical algebraic geometry and the interactions between them. The principal topics will include abelian varieties, higher dimensional algebraic geometry, and mirror symmetry. Speakers will address recent progress in approaches to the Hodge conjecture, compactifications of period domains, variations of Hodge structures, algebraicity of Hodge class loci, and normal functions.The goals of the conference are (1) to generate new ideas and collaborations, (2) to formulate and disseminate new problems and directions of research, (3) to involve a new generation of researchers in these subjects. This will be the first event in the U.S. devoted to the progress that has been made in Hodge theory over the past five years, as well as to the applications that it has in other parts of algebraic geometry. One of the central problems in this area is to resolve the Hodge conjecture; this is one of the Millennium Prize Problems of the Clay Mathematics Institute. The conference webpage can be found at http://www.math.osu.edu/conferences/hodge/.
俄亥俄州州立大学将于2013年5月13日至15日举办一个题为“霍奇理论和经典代数几何”的会议。 会议将涵盖霍奇理论,经典代数几何和它们之间的相互作用。 主要议题将包括阿贝尔簇,高维代数几何,镜像对称。 演讲者将讨论最近的进展,方法霍奇猜想,紧致化的周期域,变化的霍奇结构,代数霍奇类轨迹,和正常的功能。会议的目标是(1)产生新的想法和合作,(2)制定和传播新的问题和研究方向,(3)涉及新一代的研究人员在这些科目。 这将是美国首次专门讨论霍奇理论在过去五年中取得的进展及其在代数几何其他部分的应用的活动。 其中一个中心问题,在这方面是解决霍奇猜想,这是一个千年奖的问题,克莱数学研究所。 会议的网页可以在http://www.math.osu.edu/conferences/hodge/上找到。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gary Kennedy其他文献
Too Many Walls and Not Enough Bridges: Care Transitions Models to Support Older Adults with Mental Illness and Cognitive Impairment
- DOI:
10.1016/j.jagp.2022.12.315 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:
- 作者:
Mirnova Ceide;Gary Kennedy;Jessica Zwerling;Janice Korenblatt - 通讯作者:
Janice Korenblatt
Emerging Models of Psychiatric Services in a Pioneer Accountable Care Organization: Personal Reflections of Psychiatrists on The Front Line
- DOI:
10.1016/j.jagp.2013.12.021 - 发表时间:
2014-03-01 - 期刊:
- 影响因子:
- 作者:
Gary Kennedy;Sally Ricketts;Mirnova E. Ceïde;Paula Marcus - 通讯作者:
Paula Marcus
Session 305 - From Phone to Home: Utilizing Telephonic Case Management, Home Health Care and Psychiatric Integration to Identify and Treat Homebound Older Adults with Mental Disorders
- DOI:
10.1016/j.jagp.2016.01.031 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:
- 作者:
Gary Kennedy;Jerome Z. Korenblatt;Janice Korenblatt;Mirnova E. Ceïde - 通讯作者:
Mirnova E. Ceïde
Session 415 - Use What You Have, Do What You Can: Incorporating Standardized Medicaid and Medicare Regulation Assessment Tools to Identify Home Care Patients with Cognitive Impairment
- DOI:
10.1016/j.jagp.2017.01.074 - 发表时间:
2017-03-01 - 期刊:
- 影响因子:
- 作者:
Gary Kennedy;Jerome Z. Korenblatt;Janice Korenblatt;Mirnova E. Ceïde - 通讯作者:
Mirnova E. Ceïde
Poster Number: EI 46 - When Paranoid Psychosis Becomes Dementia: Treatment of the Aging Patient with Chronic Psychosis
- DOI:
10.1016/j.jagp.2018.01.137 - 发表时间:
2018-03-01 - 期刊:
- 影响因子:
- 作者:
Catherine Lee;Gary Kennedy - 通讯作者:
Gary Kennedy
Gary Kennedy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Mixed Quantum-Classical Semiclassical Theory: Finding Reaction Paths in Open Quantum Systems
混合量子经典半经典理论:寻找开放量子系统中的反应路径
- 批准号:
2404809 - 财政年份:2024
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
- 批准号:
2427220 - 财政年份:2024
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
Test analysis methodology connecting classical test theory and item response theory
连接经典测试理论和项目反应理论的测试分析方法
- 批准号:
22K18633 - 财政年份:2022
- 资助金额:
$ 2.8万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Classical forms of homogeneity in continuum theory
连续统理论中同质性的经典形式
- 批准号:
RGPIN-2019-05998 - 财政年份:2022
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Grants Program - Individual
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
- 批准号:
2204357 - 财政年份:2022
- 资助金额:
$ 2.8万 - 项目类别:
Standard Grant
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
- 批准号:
RGPIN-2021-02603 - 财政年份:2022
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Enabling sustainable phosphorus recovery through integration of classical nucleation theory and particle population balance modeling
职业:通过经典成核理论和颗粒种群平衡模型的整合,实现可持续的磷回收
- 批准号:
2145272 - 财政年份:2022
- 资助金额:
$ 2.8万 - 项目类别:
Continuing Grant
A Study on the Beholder's Position in the Theory of Painting: From the Classical Era to the Age of Enlightenment in France
绘画理论中观看者的地位研究:从法国古典时代到启蒙时代
- 批准号:
21J10244 - 财政年份:2021
- 资助金额:
$ 2.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Classical forms of homogeneity in continuum theory
连续统理论中同质性的经典形式
- 批准号:
RGPIN-2019-05998 - 财政年份:2021
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Grants Program - Individual
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
- 批准号:
RGPIN-2021-02603 - 财政年份:2021
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Grants Program - Individual