Independence of l and local terms
l 和局部项的独立性
基本信息
- 批准号:1303173
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal focuses on questions that arise in the study of algebraic varieties and their cohomology, many of which have arithmetic applications. Earlier work of the PI and others has led to substantial recent developments in our understanding of operations on cohomology arising from correspondences, and also to a new suite of problems which the PI will investigate. The PI will study questions of independence of l for actions of correspondences on various cohomology theories (specifically etale, intersection, and crystalline cohomology), continue his work on localized chern classes, and study global questions using trace formulas. These lines of investigation are motivated by the theory of motives, which predicts independence of l results for certain operators on cohomology and suggests that their traces should have geometric significance.In addition, the PI will continue earlier work researching algebraic stacks, abelian varieties, log geometry, Fourier-Mukai transforms, and moduli spaces. The PI will continue to advise Ph.D. students working on projects related to the proposed research.The proposed work concerns basic geometric structures, such as cohomology, moduli spaces, and stacks, which lie at the core of algebraic geometry and its interactions with other fields, including number theory, representation theory, combinatorics, and practical applications. Roughly algebraic geometry is concerned with the study of geometric properties of algebraic varieties, which are solutions of systems of polynomial equations. Cohomology theories provide some of the most powerful techniques for the study of such varieties. For example, the Lefschetz trace formula can be used to estimate numbers of solutions of polynomials over finite fields, and more generally cohomology groups of algebraic varieties are one of the main sources of Galois representations, which are fundamental objects in modern number theory. The proposal addresses problems on cohomology theories arising in this context. Another fundamental approach to the study of algebraic varieties is through their classification and moduli spaces. The PI's work on moduli spaces and stacks will continue to advance our understanding of key moduli spaces and provide broadly applicable foundational tools.
这一建议的重点是在代数变异及其上同调的研究中出现的问题,其中许多有算术应用。PI和其他人的早期工作导致了我们对由对应引起的上同调运算的理解的实质性发展,也导致了PI将研究的一系列新问题。该PI将研究各种上同调理论(特别是表、交和结晶上同调)上对应作用的l的独立性问题,继续他在局部陈氏类上的工作,并使用迹公式研究全局问题。这些研究路线是由动机理论驱动的,该理论预测了某些算子在上同调上的结果的独立性,并表明它们的痕迹应该具有几何意义。此外,PI将继续早期的工作,研究代数堆栈,阿贝尔变分,对数几何,傅里叶- mukai变换和模空间。PI将继续为从事与拟议研究相关项目的博士生提供建议。建议的工作涉及基本的几何结构,如上同调,模空间和堆栈,这是代数几何及其与其他领域的相互作用的核心,包括数论,表示论,组合学和实际应用。粗略代数几何是研究代数变量的几何性质的学科,代数变量是多项式方程组的解。上同调理论为研究这类变异提供了一些最有力的技术。例如,Lefschetz迹公式可以用来估计有限域上多项式的解的数量,更一般地说,代数变体的上同群是伽罗瓦表示的主要来源之一,是现代数论的基本对象。该提案解决了在此背景下产生的上同调理论问题。另一个研究代数变异的基本方法是通过它们的分类和模空间。PI在模空间和堆栈方面的工作将继续推进我们对关键模空间的理解,并提供广泛适用的基础工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Olsson其他文献
Derived categories and birationality
派生范畴和双理性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Max Lieblich;Martin Olsson - 通讯作者:
Martin Olsson
Derived equivalences over base schemes and support of complexes
基本方案的派生等价性和复合体的支持
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Max Lieblich;Martin Olsson - 通讯作者:
Martin Olsson
Educational intervention in triage with the Swedish triage scale RETTS©, with focus on specialist nurse students in ambulance and emergency care - A cross-sectional study.
使用瑞典分诊量表 RETTS© 对分诊进行教育干预,重点关注救护车和紧急护理专业护士学生 - 一项横断面研究。
- DOI:
10.1016/j.ienj.2022.101194 - 发表时间:
2022 - 期刊:
- 影响因子:1.8
- 作者:
Martin Olsson;A. Svensson;Henrik Andersson;Andreas Dehre;C. Elmqvist;M. Rask;S. Wireklint;Gabriella Norberg Boysen - 通讯作者:
Gabriella Norberg Boysen
Measurement of histamine in nasal lavage fluid: comparison of a glass fiber-based fluorometric method with two radioimmunoassays.
鼻腔灌洗液中组胺的测量:基于玻璃纤维的荧光法与两种放射免疫测定法的比较。
- DOI:
10.1016/s0091-6749(05)80188-5 - 发表时间:
1990 - 期刊:
- 影响因子:0
- 作者:
Morgan Andersson;Hendrik Nolte;Martin Olsson;P. S. Skov;Ulf Pipkorn - 通讯作者:
Ulf Pipkorn
Long-term tumor control following gamma-knife radiosurgery of recurrent or residual pituitary adenomas: a population-based cohort study
- DOI:
10.1007/s00701-024-06380-9 - 发表时间:
2024-11-30 - 期刊:
- 影响因子:1.900
- 作者:
Alexander Gabri;Felicia Lindberg;Helena Kristiansson;Michael Gubanski;Charlotte Höybye;Martin Olsson;Petter Förander;Simon Skyrman;Bodo Lippitz;Alexander Fletcher-Sandersjöö;Jiri Bartek - 通讯作者:
Jiri Bartek
Martin Olsson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Olsson', 18)}}的其他基金
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2151946 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Derived Categories and Other Invariants of Algebraic Varieties
代数簇的派生范畴和其他不变量
- 批准号:
1902251 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
RTG: Number Theory and Arithmetic Geometry at Berkeley
RTG:伯克利分校的数论和算术几何
- 批准号:
1646385 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Moduli Spaces, Derived Categories, and Motives
模空间、派生范畴和动机
- 批准号:
1601940 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
CAREER: Stacks, moduli spaces, and log geometry
职业:堆栈、模空间和对数几何
- 批准号:
0748718 - 财政年份:2008
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Compactification of Moduli Spaces and Logarithmic Geometry
模空间的紧化和对数几何
- 批准号:
0102066 - 财政年份:2001
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award
相似国自然基金
具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
- 批准号:11872210
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
miRNA-140调控软骨Local RAS对骨关节炎中骨-软骨复合单元血管增生和交互作用影响的研究
- 批准号:81601936
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
药学统计学在中药代谢组学中生物标记物识别的研究
- 批准号:81303315
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
图的Ramsey理论研究中的构造性方法
- 批准号:11361008
- 批准年份:2013
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
铁磁、半金属-超导异质结中电子输运的理论研究
- 批准号:60971053
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
边染色图中的异色子图问题
- 批准号:10901035
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
新型低碳马氏体高强钢在不同低温下解理断裂物理模型的研究
- 批准号:50671047
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Quantum transportation in terms of local physical quantities defined in quantum field theory
以量子场论中定义的局域物理量表示的量子传输
- 批准号:
17K04982 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysys of local circuit mechanisms in the basal forebrain in terms of parvalbumin and acetylcholine
用小白蛋白和乙酰胆碱分析基底前脑的局部回路机制
- 批准号:
17K07063 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The issues of Geographic identification in terms of the encouragement of Japanese wine industries and local cooperation of various clusters and the role of universities
鼓励日本葡萄酒产业和各集群地方合作的地理识别问题以及大学的作用
- 批准号:
16K14992 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of comprehensive local support for teenage parents in terms of child-rearing, education and employment-From the qualitative longitudinal study in Japan and South Korea
青少年父母在育儿、教育、就业等方面的综合性地方支持的发展——来自日本和韩国的定性纵向研究
- 批准号:
16H03713 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Examination on effective approaches to constructing human services in local government in terms of program evaluation
从项目评估角度探讨地方政府人文服务建设的有效途径
- 批准号:
15K13096 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Selection of local terms and transformation of local society through the Christian Bible translation
通过基督教圣经翻译选择当地术语并改造当地社会
- 批准号:
15H06295 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
The local mechanism of the Ryukyu textiles successionseen in terms of life history
从生命史看琉球纺织品传承的本土机制
- 批准号:
22720309 - 财政年份:2010
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Housing Disputes and the Role of Communities : Reconsidering in terms of Property
住房纠纷和社区的作用:从财产角度重新考虑
- 批准号:
14320014 - 财政年份:2002
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Formation of new actors to manage and use "satoyama" in terms of human network
组建新的参与者来管理和利用人际网络中的“里山”
- 批准号:
12460065 - 财政年份:2000
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Classification of homogeneous ideals in terms of the degrees of generic Grobner bases
根据通用 Grobner 基的度对齐次理想进行分类
- 批准号:
10640027 - 财政年份:1998
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)