Algebraic stacks and their applications

代数栈及其应用

基本信息

  • 批准号:
    0714086
  • 负责人:
  • 金额:
    $ 9.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-31 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

The research project is focused on a broad range of questions concerning algebraic stacks and their applications. The project is divided into two parts. The first part concerns foundational problems which have arisen in recent important applications of stacks such as the geometric Langland's program, the theory of moduli of stable maps, and the construction of moduli spaces for higher dimensional varieties. The second part of the program concerns applications of the theory. In particular new applications of the relationship between log geometry in the sense of Fontaine and Illusie and stacks discovered by the PI in earlier work, generalizations of the theory of twisted stable maps, as well as applications to the construction and study of moduli spaces for varieties of general type, abelian varieties, and vector bundles on curves.The notion of stack is a tool used to deal with internal symmetries of mathematical objects, as well as actions of groups. For example, when trying to classify geometric objects one is naturally forced to deal with the symmetries of the objects in question. In recent years, the theory of stacks has come to play an important role in almost every part of algebraic geometry, arithmetic geometry, and mathematical physics and a great number of exciting new applications of stacks have been found. This is not surprising considering the importance of symmetries in mathematics and other fields of science. This great interest in stacks has brought to light a number of important problems about stacks. The research project aims to broaden our understanding of both the foundational aspects of the theory of stacks and as well as the many applications.
该研究项目集中在与代数堆栈及其应用有关的广泛问题上。该项目分为两个部分。第一部分是关于最近在堆栈的重要应用中出现的基本问题,如几何朗兰德程序、稳定映射的模理论和高维簇的模空间的构造。该计划的第二部分涉及该理论的应用。特别是在Fontaine和Illusie意义下的对数几何与PI在早期工作中发现的堆栈之间的关系的新应用,扭曲稳定映射理论的推广,以及在构造和研究一般类型的变种、阿贝尔簇和曲线上的矢丛的模空间中的应用。堆叠的概念是用于处理数学对象的内部对称性以及群的作用的工具。例如,当试图对几何对象进行分类时,人们自然会被迫处理所讨论对象的对称性。近年来,堆栈理论在代数几何、算术几何和数学物理的几乎每一个部分都扮演着重要的角色,并发现了大量令人兴奋的新应用。考虑到对称性在数学和其他科学领域的重要性,这并不令人惊讶。对堆栈的极大兴趣揭示了有关堆栈的许多重要问题。该研究项目旨在扩大我们对堆栈理论的基本方面以及许多应用的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Olsson其他文献

Derived categories and birationality
派生范畴和双理性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Max Lieblich;Martin Olsson
  • 通讯作者:
    Martin Olsson
Derived equivalences over base schemes and support of complexes
基本方案的派生等价性和复合体的支持
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Max Lieblich;Martin Olsson
  • 通讯作者:
    Martin Olsson
Educational intervention in triage with the Swedish triage scale RETTS©, with focus on specialist nurse students in ambulance and emergency care - A cross-sectional study.
使用瑞典分诊量表 RETTS© 对分诊进行教育干预,重点关注救护车和紧急护理专业护士学生 - 一项横断面研究。
  • DOI:
    10.1016/j.ienj.2022.101194
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Martin Olsson;A. Svensson;Henrik Andersson;Andreas Dehre;C. Elmqvist;M. Rask;S. Wireklint;Gabriella Norberg Boysen
  • 通讯作者:
    Gabriella Norberg Boysen
Measurement of histamine in nasal lavage fluid: comparison of a glass fiber-based fluorometric method with two radioimmunoassays.
鼻腔灌洗液中组胺的测量:基于玻璃纤维的荧光法与两种放射免疫测定法的比较。
Long-term tumor control following gamma-knife radiosurgery of recurrent or residual pituitary adenomas: a population-based cohort study
  • DOI:
    10.1007/s00701-024-06380-9
  • 发表时间:
    2024-11-30
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Alexander Gabri;Felicia Lindberg;Helena Kristiansson;Michael Gubanski;Charlotte Höybye;Martin Olsson;Petter Förander;Simon Skyrman;Bodo Lippitz;Alexander Fletcher-Sandersjöö;Jiri Bartek
  • 通讯作者:
    Jiri Bartek

Martin Olsson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Olsson', 18)}}的其他基金

FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
  • 批准号:
    2151946
  • 财政年份:
    2022
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Standard Grant
Derived Categories and Other Invariants of Algebraic Varieties
代数簇的派生范畴和其他不变量
  • 批准号:
    1902251
  • 财政年份:
    2019
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Continuing Grant
RTG: Number Theory and Arithmetic Geometry at Berkeley
RTG:伯克利分校的数论和算术几何
  • 批准号:
    1646385
  • 财政年份:
    2017
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Continuing Grant
Moduli Spaces, Derived Categories, and Motives
模空间、派生范畴和动机
  • 批准号:
    1601940
  • 财政年份:
    2016
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Continuing Grant
Independence of l and local terms
l 和局部项的独立性
  • 批准号:
    1303173
  • 财政年份:
    2013
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Standard Grant
CAREER: Stacks, moduli spaces, and log geometry
职业:堆栈、模空间和对数几何
  • 批准号:
    0748718
  • 财政年份:
    2008
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Continuing Grant
Algebraic stacks and their applications
代数栈及其应用
  • 批准号:
    0555827
  • 财政年份:
    2006
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Standard Grant
Compactification of Moduli Spaces and Logarithmic Geometry
模空间的紧化和对数几何
  • 批准号:
    0102066
  • 财政年份:
    2001
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Fellowship Award

相似海外基金

CAREER: Datacenter-Aware Local Storage Stacks
职业:数据中心感知的本地存储堆栈
  • 批准号:
    2340218
  • 财政年份:
    2024
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Continuing Grant
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
  • 批准号:
    2302284
  • 财政年份:
    2023
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Standard Grant
Geometry of moduli stacks of Galois representations
伽罗瓦表示的模栈的几何
  • 批准号:
    2302623
  • 财政年份:
    2023
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Standard Grant
Electrically Conductive 2D Metal-Organic Frameworks and Covalent Organic Frameworks Featuring Built-in Alternating pi-Donor/Acceptor Stacks with Efficient Charge Transport Capacity
导电二维金属有机框架和共价有机框架,具有内置交替 pi 供体/受体堆栈,具有高效的电荷传输能力
  • 批准号:
    2321365
  • 财政年份:
    2023
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
  • 批准号:
    2302285
  • 财政年份:
    2023
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Standard Grant
Moduli stacks: curves, stable reduction and arithmetic
模数堆栈:曲线、稳定归约和算术
  • 批准号:
    22KF0205
  • 财政年份:
    2023
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
High Durability Solid Oxide Electrolyser Stacks with Enhanced Coated Interconnects and Metal Ion Infiltrated Electrodes - HiDroConnect
具有增强涂层互连和金属离子渗透电极的高耐用性固体氧化物电解槽堆栈 - HiDroConnect
  • 批准号:
    10080289
  • 财政年份:
    2023
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Collaborative R&D
Synthesis and Assembly 2D Heterostructured Hybrid Stacks
合成和组装 2D 异质结构混合堆栈
  • 批准号:
    2200366
  • 财政年份:
    2022
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: High-performance Network Stacks for the Edge
合作研究:CNS 核心:中:边缘的高性能网络堆栈
  • 批准号:
    2212098
  • 财政年份:
    2022
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: High-performance Network Stacks for the Edge
合作研究:CNS 核心:中:边缘的高性能网络堆栈
  • 批准号:
    2212099
  • 财政年份:
    2022
  • 资助金额:
    $ 9.69万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了