Hopf algebras, modular categories and their invariants
Hopf 代数、模范畴及其不变量
基本信息
- 批准号:1303253
- 负责人:
- 金额:$ 14.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2014-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will study the structure of certain finite-dimensional Hopf algebras, their categories of representations, and spherical fusion categories. The main part of this project concerns some categorical arithmetic invariants such as dimensions, exponents, Frobenius-Schur indicators, and representations of the modular group associated with modular tensor categories. These arithmetic invariants are closely related among each other, and they serve as important tools for studying these algebraic structures. A basic question is the relationship between the prime factors of the dimension of a simple object and those of the quasi-exponent of the underlying category. Any progress here would help in proving a conjecture of Kaplansky on semisimple Hopf algebras that remains open. The project also concerns the classification of Hopf algebras whose dimensions admit a simple prime factorization. Progress on the preceding basic question would also help in classifying finite-dimensional Hopf algebras.The appeal of symmetry has been guidance for understanding the nature of science. Some symmetry can be described in terms of algebraic structures. For instance, the symmetry of platonic solids can be described by some finite groups of spatial rotations. Hopf algebras and tensor categories are generalizations of groups which can also describe the symmetry of some physical systems. They appear naturally in many areas of mathematics and mathematical physics such as conformal field theory, statistical mechanics, and quantum computations. Thus, a deeper understanding of these algebraic structures is of fundamental importance and it will eventually be useful in the other areas of science.
本课题将研究某些有限维Hopf代数的结构、它们的表示范畴和球面融合范畴。这个项目的主要部分涉及一些范畴算术不变量,如维数、指数、Frobenius-Schur指标,以及与模张量范畴相关的模群的表示。这些算术不变量之间关系密切,是研究这些代数结构的重要工具。一个基本问题是简单对象的维数的素数因子与基本范畴的拟指数的素数因子之间的关系。这里的任何进展都将有助于证明Kaplansky关于半简单Hopf代数的猜想,这个猜想仍然是开放的。该项目还涉及的Hopf代数的分类,其维度承认一个简单的质因数分解。上述基本问题的进展也有助于对有限维Hopf代数进行分类。对称的吸引力一直是理解科学本质的指南。一些对称性可以用代数结构来描述。例如,柏拉图立体的对称性可以用空间旋转的有限群来描述。Hopf代数和张量范畴是群的推广,它们也可以描述某些物理系统的对称性。它们自然地出现在数学和数学物理的许多领域,如共形场论、统计力学和量子计算。因此,对这些代数结构的深入理解是至关重要的,它最终将在其他科学领域发挥作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siu-Hung Ng其他文献
On total Frobenius-Schur indicators
关于 Frobenius-Schur 总指标
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Liu Gongxiang;Siu-Hung Ng - 通讯作者:
Siu-Hung Ng
Reciprocity for multirestricted Stirling numbers
- DOI:
10.1016/j.jcta.2005.10.001 - 发表时间:
2006-08-01 - 期刊:
- 影响因子:
- 作者:
Ji Young Choi;Ling Long;Siu-Hung Ng;Jonathan Smith - 通讯作者:
Jonathan Smith
Reconstruction of Modular Data from $${\text {SL}}_2({\mathbb {Z}})$$ Representations
- DOI:
10.1007/s00220-023-04775-w - 发表时间:
2023-07-07 - 期刊:
- 影响因子:2.600
- 作者:
Siu-Hung Ng;Eric C. Rowell;Zhenghan Wang;Xiao-Gang Wen - 通讯作者:
Xiao-Gang Wen
Siu-Hung Ng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siu-Hung Ng', 18)}}的其他基金
FRG: cQIS: Collaborative Research: Mathematical Foundations of Topological Quantum Computation and Its Applications
FRG:cQIS:协作研究:拓扑量子计算的数学基础及其应用
- 批准号:
1664418 - 财政年份:2017
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
Hopf algebras, modular categories and their invariants
Hopf 代数、模范畴及其不变量
- 批准号:
1501179 - 财政年份:2014
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
Hopf algebras, Frobenius-Schur indicators and modular categories
Hopf 代数、Frobenius-Schur 指标和模类别
- 批准号:
1001566 - 财政年份:2010
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Modular linear differential equations and vertex operator algebras
模线性微分方程和顶点算子代数
- 批准号:
22K03249 - 财政年份:2022
- 资助金额:
$ 14.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modular Lie algebras and representation theory
模李代数和表示论
- 批准号:
2281585 - 财政年份:2019
- 资助金额:
$ 14.81万 - 项目类别:
Studentship
Representation theory of modular Lie algebras and superalgebras
模李代数和超代数的表示论
- 批准号:
EP/R018952/1 - 财政年份:2018
- 资助金额:
$ 14.81万 - 项目类别:
Research Grant
Categorical representations of Lie algebras and quantum groups and applications to modular representations
李代数和量子群的分类表示及其在模表示中的应用
- 批准号:
17K14154 - 财政年份:2017
- 资助金额:
$ 14.81万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Vertex operator algebras and modular differential equations
顶点算子代数和模微分方程
- 批准号:
17K05171 - 财政年份:2017
- 资助金额:
$ 14.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vertex Algebras and Modular Forms
顶点代数和模形式
- 批准号:
511621-2017 - 财政年份:2017
- 资助金额:
$ 14.81万 - 项目类别:
University Undergraduate Student Research Awards
Modular forms, Hecke algebras and noncommutative geometry
模形式、赫克代数和非交换几何
- 批准号:
1945151 - 财政年份:2017
- 资助金额:
$ 14.81万 - 项目类别:
Studentship
EAPSI: Modular Vertex Operator Algebras Associated with the Virasoro Algebra
EAPSI:与 Virasoro 代数相关的模顶点算子代数
- 批准号:
1713945 - 财政年份:2017
- 资助金额:
$ 14.81万 - 项目类别:
Fellowship Award
Irrational Vertex Algebras, Quantum Modular Forms, and Unrolled Quantum Groups
无理顶点代数、量子模形式和展开的量子群
- 批准号:
1601070 - 财政年份:2016
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
Hopf algebras, modular categories and their invariants
Hopf 代数、模范畴及其不变量
- 批准号:
1501179 - 财政年份:2014
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant